Python基于Opencv识别两张相似图片


Posted in Python onApril 25, 2021

在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系。 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向。 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现。

相关背景

要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照。风景照中,是沙漠还是海洋,人物照中,两个人是不是都是国字脸,还是瓜子脸(还是倒瓜子脸……哈哈……)。

那么从机器的角度来说也是这样的,先识别图像的特征,然后再相比。

很显然,在没有经过训练的计算机(即建立模型),那么计算机很难区分什么是海洋,什么是沙漠。但是计算机很容易识别到图像的像素值。

因此,在图像识别中,颜色特征是最为常用的。(其余常用的特征还有纹理特征、形状特征和空间关系特征等)

其中又分为

直方图 颜色集 颜色矩 聚合向量 相关图

直方图计算法

这里先用直方图进行简单讲述。

先借用一下恋花蝶的图片,

[图片上传失败...(image-6ca66e-1617780875489)]

从肉眼来看,这两张图片大概也有八成是相似的了。 在Python中利用opencv中的calcHist()方法获取其直方图数据,返回的结果是一个列表,使用matplotlib,画出了这两张图的直方图数据图 如下:

Python基于Opencv识别两张相似图片

是的,我们可以明显的发现,两张图片的直方图还是比较重合的。所以利用直方图判断两张图片的是否相似的方法就是,计算其直方图的重合程度即可。 计算方法如下:

Python基于Opencv识别两张相似图片

其中gi和si是分别指两条曲线的第i个点。

最后计算得出的结果就是就是其相似程度。

不过,这种方法有一个明显的弱点,就是他是按照颜色的全局分布来看的,无法描述颜色的局部分布和色彩所处的位置。

也就是假如一张图片以蓝色为主,内容是一片蓝天,而另外一张图片也是蓝色为主,但是内容却是妹子穿了蓝色裙子,那么这个算法也很可能认为这两张图片的相似的。

缓解这个弱点有一个方法就是利用Image的crop方法把图片等分,然后再分别计算其相似度,最后综合考虑。

图像指纹与汉明距离

在介绍下面其他判别相似度的方法前,先补充一些概念。第一个就是图像指纹

图像指纹和人的指纹一样,是身份的象征,而图像指纹简单点来讲,就是将图像按照一定的哈希算法,经过运算后得出的一组二进制数字。

说到这里,就可以顺带引出汉明距离的概念了。

假如一组二进制数据为101,另外一组为111,那么显然把第一组的第二位数据0改成1就可以变成第二组数据111,所以两组数据的汉明距离就为1

简单点说,汉明距离就是一组二进制数据变成另一组数据所需的步骤数,显然,这个数值可以衡量两张图片的差异,汉明距离越小,则代表相似度越高。汉明距离为0,即代表两张图片完全一样。

如何计算得到汉明距离,请看下面三种哈希算法

平均哈希法(aHash)

此算法是基于比较灰度图每个像素与平均值来实现的

一般步骤:

1.缩放图片,一般大小为8*8,64个像素值。
2.转化为灰度图
3.计算平均值:计算进行灰度处理后图片的所有像素点的平均值,直接用numpy中的mean()计算即可。
4.比较像素灰度值:遍历灰度图片每一个像素,如果大于平均值记录为1,否则为0.
5.得到信息指纹:组合64个bit位,顺序随意保持一致性。
最后比对两张图片的指纹,获得汉明距离即可。

感知哈希算法(pHash)

平均哈希算法过于严格,不够精确,更适合搜索缩略图,为了获得更精确的结果可以选择感知哈希算法,它采用的是DCT(离散余弦变换)来降低频率的方法

一般步骤:

  1. 缩小图片:32 * 32是一个较好的大小,这样方便DCT计算
  2. 转化为灰度图
  3. 计算DCT:利用Opencv中提供的dct()方法,注意输入的图像必须是32位浮点型,所以先利用numpy中的float32进行转换
  4. 缩小DCT:DCT计算后的矩阵是32 * 32,保留左上角的8 * 8,这些代表的图片的最低频率
  5. 计算平均值:计算缩小DCT后的所有像素点的平均值。
  6. 进一步减小DCT:大于平均值记录为1,反之记录为0.
  7. 得到信息指纹:组合64个信息位,顺序随意保持一致性。

最后比对两张图片的指纹,获得汉明距离即可。

dHash算法

相比pHash,dHash的速度要快的多,相比aHash,dHash在效率几乎相同的情况下的效果要更好,它是基于渐变实现的。

步骤:

  • 缩小图片:收缩到9*8的大小,以便它有72的像素点
  • 转化为灰度图
  • 计算差异值:dHash算法工作在相邻像素之间,这样每行9个像素之间产生了8个不同的差异,一共8行,则产生了64个差异值
  • 获得指纹:如果左边的像素比右边的更亮,则记录为1,否则为0.
  • 最后比对两张图片的指纹,获得汉明距离即可

整个的代码实现如下:

# -*- coding: utf-8 -*- 
# 利用python实现多种方法来实现图像识别 
 
import cv2 
import numpy as np 
from matplotlib import pyplot as plt 
 
# 最简单的以灰度直方图作为相似比较的实现 
def classify_gray_hist(image1,image2,size = (256,256)): 
 # 先计算直方图 
 # 几个参数必须用方括号括起来 
 # 这里直接用灰度图计算直方图,所以是使用第一个通道, 
 # 也可以进行通道分离后,得到多个通道的直方图 
 # bins 取为16 
 image1 = cv2.resize(image1,size) 
 image2 = cv2.resize(image2,size) 
 hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0]) 
 hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0]) 
 # 可以比较下直方图 
 plt.plot(range(256),hist1,'r') 
 plt.plot(range(256),hist2,'b') 
 plt.show() 
 # 计算直方图的重合度 
 degree = 0 
 for i in range(len(hist1)): 
 if hist1[i] != hist2[i]: 
 degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i])) 
 else: 
 degree = degree + 1 
 degree = degree/len(hist1) 
 return degree 
 
# 计算单通道的直方图的相似值 
def calculate(image1,image2): 
 hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0]) 
 hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0]) 
 # 计算直方图的重合度 
 degree = 0 
 for i in range(len(hist1)): 
 if hist1[i] != hist2[i]: 
 degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i])) 
 else: 
 degree = degree + 1 
 degree = degree/len(hist1) 
 return degree 
 
# 通过得到每个通道的直方图来计算相似度 
def classify_hist_with_split(image1,image2,size = (256,256)): 
 # 将图像resize后,分离为三个通道,再计算每个通道的相似值 
 image1 = cv2.resize(image1,size) 
 image2 = cv2.resize(image2,size) 
 sub_image1 = cv2.split(image1) 
 sub_image2 = cv2.split(image2) 
 sub_data = 0 
 for im1,im2 in zip(sub_image1,sub_image2): 
 sub_data += calculate(im1,im2) 
 sub_data = sub_data/3 
 return sub_data 
 
# 平均哈希算法计算 
def classify_aHash(image1,image2): 
 image1 = cv2.resize(image1,(8,8)) 
 image2 = cv2.resize(image2,(8,8)) 
 gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY) 
 gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY) 
 hash1 = getHash(gray1) 
 hash2 = getHash(gray2) 
 return Hamming_distance(hash1,hash2) 
 
def classify_pHash(image1,image2): 
 image1 = cv2.resize(image1,(32,32)) 
 image2 = cv2.resize(image2,(32,32)) 
 gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY) 
 gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY) 
 # 将灰度图转为浮点型,再进行dct变换 
 dct1 = cv2.dct(np.float32(gray1)) 
 dct2 = cv2.dct(np.float32(gray2)) 
 # 取左上角的8*8,这些代表图片的最低频率 
 # 这个操作等价于c++中利用opencv实现的掩码操作 
 # 在python中进行掩码操作,可以直接这样取出图像矩阵的某一部分 
 dct1_roi = dct1[0:8,0:8] 
 dct2_roi = dct2[0:8,0:8] 
 hash1 = getHash(dct1_roi) 
 hash2 = getHash(dct2_roi) 
 return Hamming_distance(hash1,hash2) 
 
# 输入灰度图,返回hash 
def getHash(image): 
 avreage = np.mean(image) 
 hash = [] 
 for i in range(image.shape[0]): 
 for j in range(image.shape[1]): 
 if image[i,j] > avreage: 
 hash.append(1) 
 else: 
 hash.append(0) 
 return hash 
 
 
# 计算汉明距离 
def Hamming_distance(hash1,hash2): 
 num = 0 
 for index in range(len(hash1)): 
 if hash1[index] != hash2[index]: 
 num += 1 
 return num 
 
 
if __name__ == '__main__': 
 img1 = cv2.imread('10.jpg') 
 cv2.imshow('img1',img1) 
 img2 = cv2.imread('11.jpg') 
 cv2.imshow('img2',img2) 
 degree = classify_gray_hist(img1,img2) 
 #degree = classify_hist_with_split(img1,img2) 
 #degree = classify_aHash(img1,img2) 
 #degree = classify_pHash(img1,img2) 
 print degree 
 cv2.waitKey(0)

以上就是Python基于Opencv识别两张相似图片的详细内容,更多关于python识别相似图片的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python实现豆瓣图片下载的方法
May 25 Python
python实现颜色空间转换程序(Tkinter)
Dec 31 Python
Python 2与Python 3版本和编码的对比
Feb 14 Python
Python 迭代器与生成器实例详解
May 18 Python
python下载图片实现方法(超简单)
Jul 21 Python
Python字典数据对象拆分的简单实现方法
Dec 05 Python
Django 过滤器汇总及自定义过滤器使用详解
Jul 19 Python
python tkinter图形界面代码统计工具
Sep 18 Python
Django-xadmin后台导入json数据及后台显示信息图标和主题更改方式
Mar 11 Python
基于python爬取有道翻译过程图解
Mar 31 Python
解决Python spyder显示不全df列和行的问题
Apr 20 Python
Pycharm制作搞怪弹窗的实现代码
Feb 19 Python
matplotlib之pyplot模块实现添加子图subplot的使用
python实现简单区块链结构
python实现图片九宫格分割的示例
详解python中[-1]、[:-1]、[::-1]、[n::-1]使用方法
Apr 25 #Python
浅谈Python项目的服务器部署
Apr 25 #Python
Python Socket编程详解
Apr 25 #Python
Python Django 后台管理之后台模型属性详解
You might like
DW中链接mysql数据库时,建立字符集中文出现乱码的解决方法
2010/03/27 PHP
深入mysql_fetch_row()与mysql_fetch_array()的区别详解
2013/06/05 PHP
PHP执行Curl时报错提示CURL ERROR: Recv failure: Connection reset by peer的解决方法
2014/06/26 PHP
php获取客户端电脑屏幕参数的方法
2015/01/09 PHP
yii的入口文件index.php中为什么会有这两句
2016/08/04 PHP
PHP手机短信验证码实现流程详解
2018/05/17 PHP
php strftime函数的详细用法
2018/06/21 PHP
又一个图片自动缩小的JS代码
2007/03/10 Javascript
javascript 写类方式之一
2009/07/05 Javascript
Javascript 读书笔记索引贴
2010/01/11 Javascript
JS异常处理的一个想法(sofish)
2013/03/14 Javascript
ES6新特性之Object的变化分析
2017/03/31 Javascript
利用jQuery异步上传文件的插件用法详解
2017/07/19 jQuery
JavaScript模拟文件拖选框样式v1.0的实例
2017/08/04 Javascript
微信小程序异步处理详解
2017/11/10 Javascript
基于 Vue 实现一个酷炫的 menu插件
2017/11/14 Javascript
深入浅析Vue.js计算属性和侦听器
2018/05/05 Javascript
浅谈Vue响应式(数组变异方法)
2018/05/07 Javascript
关于vue v-for 循环问题(一行显示四个,每一行的最右边那个计算属性)
2018/09/04 Javascript
图文讲解vue的v-if使用方法
2019/02/11 Javascript
vue.js 2.*项目环境搭建、运行、打包发布的详细步骤
2019/05/01 Javascript
前端路由&webpack基础配置详解
2019/06/10 Javascript
vue-cli3.X快速创建项目的方法步骤
2019/11/14 Javascript
微信浏览器左上角返回按钮监听的实现
2020/03/04 Javascript
jquery插件实现轮播图效果
2020/10/19 jQuery
Python读写Json涉及到中文的处理方法
2016/09/12 Python
浅谈django开发者模式中的autoreload是如何实现的
2017/08/18 Python
Python实现抓取HTML网页并以PDF文件形式保存的方法
2018/05/08 Python
Python实现将HTML转成PDF的方法分析
2019/05/04 Python
django+echart数据动态显示的例子
2019/08/12 Python
Python封装成可带参数的EXE安装包实例
2019/08/24 Python
Pytorch生成随机数Tensor的方法汇总
2020/09/09 Python
基于python判断字符串括号是否闭合{}[]()
2020/09/21 Python
CSS Grid布局教程之什么是网格布局
2014/12/30 HTML / CSS
利用CSS3的transition属性实现滑动效果
2015/08/05 HTML / CSS
读《皮囊》有感:理解是对他人的最大的善举
2019/11/14 职场文书