Python图像处理之膨胀与腐蚀的操作


Posted in Python onFebruary 07, 2021

引言

膨胀与腐蚀是图像处理中两种最基本的形态学操作,膨胀将目标点融合到背景中,向外部扩展,腐蚀与膨胀意义相反,消除连通的边界,使边界向内收缩。在本文中我们将了解使用内核的图像膨胀与腐蚀的基本原理。

让我们开始吧,同样我们需要导入必需的库。

import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread, imshow
from skimage.draw import circle
from skimage.morphology import erosion, dilation

首先让我们创建一个容易操作的形状--一个简单的圆。

circ_image = np.zeros((100, 100))
circ_image[circle(50, 50, 25)] = 1
imshow(circ_image);

Python图像处理之膨胀与腐蚀的操作

现在让我们定义一个内核。

cross = np.array([[0,1,0],
   [1,1,1],
   [0,1,0]])
imshow(cross, cmap = 'gray');

Python图像处理之膨胀与腐蚀的操作

将腐蚀函数应用到创建的圆上。

eroded_circle = erosion(circ_image, cross)
imshow(eroded_circle);

Python图像处理之膨胀与腐蚀的操作

图像看起来几乎一模一样。要看到那些微小的差异,我们必须仔细查看图像。

linecolor = 'red'
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
ax[0].imshow(circ_image, cmap = 'gray');
ax[0].set_title('Original', fontsize = 19)
ax[0].axvline(x = 25, color = linecolor)
ax[0].axvline(x = 75, color = linecolor)
ax[0].axhline(y = 25, color = linecolor)
ax[0].axhline(y = 75, color = linecolor)
ax[1].imshow(eroded_circle, cmap = 'gray');
ax[1].set_title('Eroded', fontsize = 19)
ax[1].axvline(x = 25, color = linecolor)
ax[1].axvline(x = 75, color = linecolor)
ax[1].axhline(y = 25, color = linecolor)
ax[1].axhline(y = 75, color = linecolor)
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

我们可以看到,被腐蚀的圆已经略微缩小了。这就是腐蚀一个对象的意义。如果我们对腐蚀函数进行迭代,它的效果会变得非常明显。

def multi_erosion(image, kernel, iterations):
 for i in range(iterations):
 image = erosion(image, kernel)
 return image
ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Iterations : {ites[n]}', fontsize = 16)
 new_circle = multi_erosion(circ_image, cross, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

上图清楚地显示了图像是如何被腐蚀的。现在让我们尝试改变内核,如果我们使用水平线和垂直线内核代替交叉内核会怎样呢?

h_line = np.array([[0,0,0],
   [1,1,1],
   [0,0,0]])
v_line = np.array([[0,1,0],
   [0,1,0],
   [0,1,0]])
fig, ax = plt.subplots(1, 2, figsize=(15, 5))
ax[0].imshow(h_line, cmap='gray');
ax[1].imshow(v_line, cmap='gray');
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Horizontal Iterations : {ites[n]}', fontsize = 12)
 new_circle = multi_erosion(circ_image, h_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Vertical Iterationss : {ites[n]}', fontsize = 12)
 new_circle = multi_erosion(circ_image, v_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

正如我们所看到的,水平和垂直的腐蚀以不同的方式影响着图像。使用水平内核我们得到一个垂直方向细长的圆;而使用垂直内核我们得到一个水平方向细长的圆。

你可能会奇怪,为什么使用垂直内核,会得到一个水平方向细长的圆呢?

因为腐蚀函数是分别寻找垂直和水平的线条,并慢慢把它们削掉。膨胀函数将会让我们更清晰的理解这一点。

使用下面的函数设置处理的图像、膨胀内核以及迭代次数。

def multi_dilation(image, kernel, iterations):
 for i in range(iterations):
 image = dilation(image, kernel)
 return image

让我们看一下处理后的图像有什么不同。

dilated_circle = multi_dilation(circ_image, cross, 1)
linecolor = 'red'
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
ax[0].imshow(circ_image, cmap = 'gray');
ax[0].set_title('Original', fontsize = 19)
ax[0].axvline(x = 25, color = linecolor)
ax[0].axvline(x = 75, color = linecolor)
ax[0].axhline(y = 25, color = linecolor)
ax[0].axhline(y = 75, color = linecolor)
ax[1].imshow(dilated_circle, cmap = 'gray');
ax[1].set_title('Dilated', fontsize = 19)
ax[1].axvline(x = 25, color = linecolor)
ax[1].axvline(x = 75, color = linecolor)
ax[1].axhline(y = 25, color = linecolor)
ax[1].axhline(y = 75, color = linecolor)
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

可以清楚地看到圆现在已经越过了红线,这清楚地表明它已经扩大了。现在让我们对水平和垂直扩张进行迭代。

ites = [2,4,6,8,10,12,14,16,18,20]
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Horizontal Iterations : {ites[n]}', fontsize = 
   12)
 new_circle = multi_dilation(circ_image, h_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()
fig, ax = plt.subplots(2, 5, figsize=(17, 5))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'Vertical Iterationss : {ites[n]}', fontsize = 12)
 new_circle = multi_dilation(circ_image, v_line, ites[n])
 ax.imshow(new_circle, cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

现在可以非常清楚地看到,水平扩张增加了图像宽度,而垂直扩张增加了图像高度。

现在我们已经了解了膨胀与腐蚀的基本原理,下面来看一个相对复杂的图像。

complex_image = imread('complex_image.png')
imshow(complex_image);

Python图像处理之膨胀与腐蚀的操作

在上面的图像中,我们看到了水平线、垂直线和圆的混合物。我们可以使用膨胀和腐蚀函数孤立地观察每一种形状。

为了得到圆,我们可以先腐蚀垂直的线,再腐蚀水平的线。但要记住最后要对图像进行膨胀,因为腐蚀函数同样腐蚀了圆。

step_1 = multi_erosion(complex_image, h_line,3)
step_2 = multi_erosion(step_1, v_line,3)
step_3 = multi_dilation(step_2, h_line,3)
step_4 = multi_dilation(step_3, v_line,3)
steps = [step_1, step_2, step_3, step_4]
names = ['Step 1', 'Step 2', 'Step 3', 'Step 4']
fig, ax = plt.subplots(2, 2, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

同样,下面的代码将得到水平的线。

step_1 = multi_erosion(complex_image, cross, 20)
step_2 = multi_dilation(step_1, h_line, 20)
step_3 = multi_dilation(step_2, v_line,2)
steps = [step_1, step_2, step_3]
names = ['Step 1', 'Step 2', 'Step 3']
fig, ax = plt.subplots(1, 3, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

为了得到垂直的线,我们可以创建一个新的内核。

long_v_line = np.array([[0,1,0],
   [0,1,0],
   [0,1,0],
   [0,1,0],
   [0,1,0]])
step_1 = multi_erosion(complex_image, long_v_line, 10)
step_2 = multi_dilation(step_1 ,long_v_line, 10)
steps = [step_1, step_2]
names = ['Step 1', 'Step 2']
fig, ax = plt.subplots(1, 2, figsize=(10, 10))
for n, ax in enumerate(ax.flatten()):
 ax.set_title(f'{names[n]}', fontsize = 22)
 ax.imshow(steps[n], cmap = 'gray');
 ax.axis('off')
fig.tight_layout()

Python图像处理之膨胀与腐蚀的操作

注意,内核并不局限于本文中提到的这几种,可以根据不同的需求自己定义合适的内核。

总结

内核腐蚀和膨胀是图像处理领域需要理解的基本概念。它们甚至可能是任何图像处理模块的第一课。直观地理解它们将是你以后在这个领域成功的关键。

到此这篇关于Python图像处理之膨胀与腐蚀的操作的文章就介绍到这了,更多相关Python图像膨胀与腐蚀内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python完成FizzBuzzWhizz问题(拉勾网面试题)示例
May 05 Python
python实现通过代理服务器访问远程url的方法
Apr 29 Python
python实现数值积分的Simpson方法实例分析
Jun 05 Python
简单谈谈python中的Queue与多进程
Aug 25 Python
基于Python中numpy数组的合并实例讲解
Apr 04 Python
matplotlib调整子图间距,调整整体空白的方法
Aug 03 Python
python实现Zabbix-API监控
Sep 17 Python
通过python的matplotlib包将Tensorflow数据进行可视化的方法
Jan 09 Python
python Selenium实现付费音乐批量下载的实现方法
Jan 24 Python
Jupyter Notebook 实现正常显示中文和负号
Apr 24 Python
python3 re返回形式总结
Nov 20 Python
Python批量将csv文件转化成xml文件的实例
May 10 Python
django inspectdb 操作已有数据库数据的使用步骤
Feb 07 #Python
python数据抓取3种方法总结
Feb 07 #Python
python 批量将中文名转换为拼音
Feb 07 #Python
如何用用Python将地址标记在地图上
Feb 07 #Python
python 三种方法提取pdf中的图片
Feb 07 #Python
Python 转移文件至云对象存储的方法
Feb 07 #Python
Python调用SMTP服务自动发送Email的实现步骤
Feb 07 #Python
You might like
php数组函数序列 之shuffle()和array_rand() 随机函数使用介绍
2011/10/29 PHP
用PHP实现 上一篇、下一篇的代码
2012/09/29 PHP
多个PHP中文字符串截取函数
2013/11/12 PHP
PHP中使用BigMap实例
2015/03/30 PHP
Nginx实现反向代理
2017/09/20 Servers
php对微信支付回调处理的方法
2018/08/23 PHP
Laravel6.18.19如何优雅的切换发件账户
2020/06/14 PHP
js操作textarea方法集合封装(兼容IE,firefox)
2011/02/22 Javascript
Javascript计算时间差的函数分享
2011/07/04 Javascript
JS定时器实例详细分析
2013/10/11 Javascript
JS实现简单路由器功能的方法
2015/05/27 Javascript
jQuery+HTML5实现手机摇一摇换衣特效
2015/06/05 Javascript
基于JavaScript实现跳转提示页面
2016/09/24 Javascript
ajax异步请求详解
2017/01/06 Javascript
Node.js之网络通讯模块实现浅析
2017/04/01 Javascript
脚手架vue-cli工程webpack的作用和特点
2018/09/29 Javascript
一个手写的vue放大镜效果
2019/08/09 Javascript
vue实现下拉菜单树
2020/10/22 Javascript
python获取当前日期和时间的方法
2015/04/30 Python
PyQt4实现下拉菜单可供选择并打印出来
2018/04/20 Python
Python Image模块基本图像处理操作小结
2019/04/13 Python
Python中的十大图像处理工具(小结)
2019/06/10 Python
Django中提供的6种缓存方式详解
2019/08/05 Python
Python decimal模块使用方法详解
2020/06/08 Python
python对 MySQL 数据库进行增删改查的脚本
2020/10/22 Python
浅析HTML5中的 History 模式
2017/06/22 HTML / CSS
金融管理专业毕业生求职信
2014/03/12 职场文书
初中班主任评语大全
2014/04/24 职场文书
管理建议书范文
2014/05/13 职场文书
机关领导查摆四风思想汇报
2014/09/13 职场文书
防火标语大全
2014/10/06 职场文书
2015上半年个人工作总结
2015/07/27 职场文书
《语言的突破》读后感3篇
2019/12/12 职场文书
MySQL官方导出工具mysqlpump的使用
2021/05/21 MySQL
python 开心网和豆瓣日记爬取的小爬虫
2021/05/29 Python
Java Shutdown Hook场景使用及源码分析
2021/06/15 Java/Android