八大排序算法的Python实现


Posted in Python onJanuary 28, 2021

Python实现八大排序算法,具体内容如下

1、插入排序

描述

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。

代码实现

def insert_sort(lists):
 # 插入排序
 count = len(lists)
 for i in range(1, count):
  key = lists[i]
  j = i - 1
  while j >= 0:
   if lists[j] > key:
    lists[j + 1] = lists[j]
    lists[j] = key
   j -= 1
 return lists

2、希尔排序

描述

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

代码实现

def shell_sort(lists):
 # 希尔排序
 count = len(lists)
 step = 2
 group = count / step
 while group > 0:
  for i in range(0, group):
   j = i + group
   while j < count:
    k = j - group
    key = lists[j]
    while k >= 0:
     if lists[k] > key:
      lists[k + group] = lists[k]
      lists[k] = key
     k -= group
    j += group
  group /= step
 return lists

3、冒泡排序

描述

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

代码实现

def bubble_sort(lists):
 # 冒泡排序
 count = len(lists)
 for i in range(0, count):
  for j in range(i + 1, count):
   if lists[i] > lists[j]:
    lists[i], lists[j] = lists[j], lists[i]
 return lists

4、快速排序

描述

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

代码实现

def quick_sort(lists, left, right):
 # 快速排序
 if left >= right:
  return lists
 key = lists[left]
 low = left
 high = right
 while left < right:
  while left < right and lists[right] >= key:
   right -= 1
  lists[left] = lists[right]
  while left < right and lists[left] <= key:
   left += 1
  lists[right] = lists[left]
 lists[right] = key
 quick_sort(lists, low, left - 1)
 quick_sort(lists, left + 1, high)
 return lists

5、直接选择排序

描述

基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。

代码实现

def select_sort(lists):
 # 选择排序
 count = len(lists)
 for i in range(0, count):
  min = i
  for j in range(i + 1, count):
   if lists[min] > lists[j]:
    min = j
  lists[min], lists[i] = lists[i], lists[min]
 return lists

6、堆排序

描述

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

代码实现

# 调整堆
def adjust_heap(lists, i, size):
 lchild = 2 * i + 1
 rchild = 2 * i + 2
 max = i
 if i < size / 2:
  if lchild < size and lists[lchild] > lists[max]:
   max = lchild
  if rchild < size and lists[rchild] > lists[max]:
   max = rchild
  if max != i:
   lists[max], lists[i] = lists[i], lists[max]
   adjust_heap(lists, max, size)

# 创建堆
def build_heap(lists, size):
 for i in range(0, (size/2))[::-1]:
  adjust_heap(lists, i, size)

# 堆排序
def heap_sort(lists):
 size = len(lists)
 build_heap(lists, size)
 for i in range(0, size)[::-1]:
  lists[0], lists[i] = lists[i], lists[0]
  adjust_heap(lists, 0, i)

7、归并排序

描述

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。

代码实现

def merge(left, right):
 i, j = 0, 0
 result = []
 while i < len(left) and j < len(right):
  if left[i] <= right[j]:
   result.append(left[i])
   i += 1
  else:
   result.append(right[j])
   j += 1
 result += left[i:]
 result += right[j:]
 return result

def merge_sort(lists):
 # 归并排序
 if len(lists) <= 1:
  return lists
 num = len(lists) / 2
 left = merge_sort(lists[:num])
 right = merge_sort(lists[num:])
 return merge(left, right)

8、基数排序

描述

基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。

代码实现

import math
def radix_sort(lists, radix=10):
 k = int(math.ceil(math.log(max(lists), radix)))
 bucket = [[] for i in range(radix)]
 for i in range(1, k+1):
  for j in lists:
   bucket[j/(radix**(i-1)) % (radix**i)].append(j)
  del lists[:]
  for z in bucket:
   lists += z
   del z[:]
 return lists

以上就是Python实现八大排序算法的详细介绍,希望对大家的学习有所帮助。

Python 相关文章推荐
python获取糗百图片代码实例
Dec 18 Python
Flask框架Flask-Principal基本用法实例分析
Jul 23 Python
python使用xlsxwriter实现有向无环图到Excel的转换
Dec 12 Python
python画图--输出指定像素点的颜色值方法
Jul 03 Python
Python中新式类与经典类的区别详析
Jul 10 Python
Python Django中间件,中间件函数,全局异常处理操作示例
Nov 08 Python
Python autoescape标签用法解析
Jan 17 Python
简单了解python shutil模块原理及使用方法
Apr 28 Python
浅谈python3打包与拆包在函数的应用详解
May 02 Python
Python Dict找出value大于某值或key大于某值的所有项方式
Jun 05 Python
Keras搭建自编码器操作
Jul 03 Python
python 爬取英雄联盟皮肤并下载的示例
Dec 04 Python
详解C++编程中一元运算符的重载
Jan 19 #Python
Python中使用Queue和Condition进行线程同步的方法
Jan 19 #Python
简单总结Python中序列与字典的相同和不同之处
Jan 19 #Python
举例讲解如何在Python编程中进行迭代和遍历
Jan 19 #Python
Python的自动化部署模块Fabric的安装及使用指南
Jan 19 #Python
Python编程中time模块的一些关键用法解析
Jan 19 #Python
Python编程中的文件读写及相关的文件对象方法讲解
Jan 19 #Python
You might like
php实现的css文件背景图片下载器代码
2014/11/11 PHP
php中try catch捕获异常实例详解
2014/11/21 PHP
Prototype Class对象学习
2009/07/19 Javascript
jquery拖动插件(jquery.drag)使用介绍
2013/06/18 Javascript
jQuery 获取、设置HTML或TEXT内容的两种方法
2014/05/23 Javascript
jQuery过滤特殊字符及JS字符串转为数字
2016/05/26 Javascript
AngularJS创建自定义指令的方法详解
2016/11/03 Javascript
JS控制TreeView的结点选择
2016/11/11 Javascript
Html5 js实现手风琴效果
2020/04/17 Javascript
json字符串传到前台input的方法
2018/08/06 Javascript
layer.alert回调函数执行关闭弹窗的实例
2019/09/11 Javascript
微信小程序全选多选效果实现代码解析
2020/01/21 Javascript
原生JS实现无缝轮播图片
2020/06/24 Javascript
如何使用three.js 制作一个三维的推箱子游戏
2020/07/29 Javascript
js实现贪吃蛇游戏(简易版)
2020/09/29 Javascript
Python递归函数定义与用法示例
2017/06/02 Python
如何在Django中添加没有微秒的 DateTimeField 属性详解
2019/01/30 Python
OpenCV+Python识别车牌和字符分割的实现
2019/01/31 Python
Django使用Jinja2模板引擎的示例代码
2019/08/09 Python
PyCharm2018 安装及破解方法实现步骤
2019/09/09 Python
python中从for循环延申到推导式的具体使用
2019/11/29 Python
Python tkinter布局与按钮间距设置方式
2020/03/04 Python
Python面向对象程序设计之继承、多态原理与用法详解
2020/03/23 Python
Python环境下安装PyGame和PyOpenGL的方法
2020/03/25 Python
举例详解HTML5中使用JSON格式提交表单
2015/06/16 HTML / CSS
Bibloo匈牙利:女装、男装、童装及鞋子和配饰
2019/04/14 全球购物
SQL语言面试题
2013/08/27 面试题
浪漫婚礼主持词
2014/03/14 职场文书
美容院经理岗位职责
2014/04/03 职场文书
工作会议方案
2014/05/21 职场文书
小学学校评估方案
2014/06/08 职场文书
优秀高中学生评语
2014/12/30 职场文书
2015年销售助理工作总结
2015/05/11 职场文书
警示教育片观后感
2015/06/17 职场文书
初三英语教学反思
2016/02/15 职场文书
《我在为谁工作》:工作的质量往往决定生活的质量
2019/12/27 职场文书