由浅入深讲解python中的yield与generator


Posted in Python onApril 05, 2017

前言

本文将由浅入深详细介绍yield以及generator,包括以下内容:什么generator,生成generator的方法,generator的特点,generator基础及高级应用场景,generator使用中的注意事项。本文不包括enhanced generator即pep342相关内容,这部分内容在之后介绍。

generator基础

在python的函数(function)定义中,只要出现了yield表达式(Yield expression),那么事实上定义的是一个generator function, 调用这个generator function返回值是一个generator。这根普通的函数调用有所区别,For example:

def gen_generator():
 yield 1

def gen_value():
 return 1
 
if __name__ == '__main__':
 ret = gen_generator()
 print ret, type(ret) #<generator object gen_generator at 0x02645648> <type 'generator'>
 ret = gen_value()
 print ret, type(ret) # 1 <type 'int'>

从上面的代码可以看出,gen_generator函数返回的是一个generator实例

generator有以下特别:

     •遵循迭代器(iterator)协议,迭代器协议需要实现__iter__ 、next接口

     •能过多次进入、多次返回,能够暂停函数体中代码的执行

下面看一下测试代码: 

>>> def gen_example():
... print 'before any yield'
... yield 'first yield'
... print 'between yields'
... yield 'second yield'
... print 'no yield anymore'
... 
>>> gen = gen_example()
>>> gen.next()
# 第一次调用next
before any yield
'first yield'
>>> gen.next()

# 第二次调用next
between yields
'second yield'
>>> gen.next()

# 第三次调用next
no yield anymore
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteratio

调用gen example方法并没有输出任何内容,说明函数体的代码尚未开始执行。当调用generator的next方法,generator会执行到yield 表达式处,返回yield表达式的内容,然后暂停(挂起)在这个地方,所以第一次调用next打印第一句并返回“first yield”。 暂停意味着方法的局部变量,指针信息,运行环境都保存起来,直到下一次调用next方法恢复。第二次调用next之后就暂停在最后一个yield,再次调用next()方法,则会抛出StopIteration异常。 

因为for语句能自动捕获StopIteration异常,所以generator(本质上是任何iterator)较为常用的方法是在循环中使用: 

def generator_example():
 yield 1
 yield 2

if __name__ == '__main__':
 for e in generator_example():
 print e
 # output 1 2

generator function产生的generator与普通的function有什么区别呢

(1)function每次都是从第一行开始运行,而generator从上一次yield开始的地方运行

(2)function调用一次返回一个(一组)值,而generator可以多次返回

(3)function可以被无数次重复调用,而一个generator实例在yield最后一个值 或者return之后就不能继续调用了

在函数中使用Yield,然后调用该函数是生成generator的一种方式。另一种常见的方式是使用generator expression,For example:

>>> gen = (x * x for x in xrange(5))

>>> print gen

<generator object <genexpr> at 0x02655710>

generator应用

generator基础应用

为什么使用generator呢,最重要的原因是可以按需生成并“返回”结果,而不是一次性产生所有的返回值,况且有时候根本就不知道“所有的返回值”。

比如对于下面的代码  

RANGE_NUM = 100
 for i in [x*x for x in range(RANGE_NUM)]: # 第一种方法:对列表进行迭代
 # do sth for example
 print i

 for i in (x*x for x in range(RANGE_NUM)): # 第二种方法:对generator进行迭代
 # do sth for example
 print i

在上面的代码中,两个for语句输出是一样的,代码字面上看来也就是中括号与小括号的区别。但这点区别差异是很大的,第一种方法返回值是一个列表,第二个方法返回的是一个generator对象。随着RANGE_NUM的变大,第一种方法返回的列表也越大,占用的内存也越大;但是对于第二种方法没有任何区别。

我们再来看一个可以“返回”无穷多次的例子:

def fib():
 a, b = 1, 1
 while True:
 yield a
 a, b = b, a+b

这个generator拥有生成无数多“返回值”的能力,使用者可以自己决定什么时候停止迭代

generator高级应用

使用场景一:

Generator可用于产生数据流, generator并不立刻产生返回值,而是等到被需要的时候才会产生返回值,相当于一个主动拉取的过程(pull),比如现在有一个日志文件,每行产生一条记录,对于每一条记录,不同部门的人可能处理方式不同,但是我们可以提供一个公用的、按需生成的数据流。

def gen_data_from_file(file_name):
 for line in file(file_name):
 yield line

def gen_words(line):
 for word in (w for w in line.split() if w.strip()):
 yield word

def count_words(file_name):
 word_map = {}
 for line in gen_data_from_file(file_name):
 for word in gen_words(line):
  if word not in word_map:
  word_map[word] = 0
  word_map[word] += 1
 return word_map

def count_total_chars(file_name):
 total = 0
 for line in gen_data_from_file(file_name):
 total += len(line)
 return total
 
if __name__ == '__main__':
 print count_words('test.txt'), count_total_chars('test.txt')

上面的例子来自08年的PyCon一个讲座。gen_words gen_data_from_file是数据生产者,而count_words count_total_chars是数据的消费者。可以看到,数据只有在需要的时候去拉取的,而不是提前准备好。另外gen_words中 (w for w in line.split() if w.strip()) 也是产生了一个generator

使用场景二:

一些编程场景中,一件事情可能需要执行一部分逻辑,然后等待一段时间、或者等待某个异步的结果、或者等待某个状态,然后继续执行另一部分逻辑。比如微服务架构中,服务A执行了一段逻辑之后,去服务B请求一些数据,然后在服务A上继续执行。或者在游戏编程中,一个技能分成分多段,先执行一部分动作(效果),然后等待一段时间,然后再继续。对于这种需要等待、而又不希望阻塞的情况,我们一般使用回调(callback)的方式。下面举一个简单的例子:

def do(a):
 print 'do', a
 CallBackMgr.callback(5, lambda a = a: post_do(a))
 
 def post_do(a):
 print 'post_do', a

这里的CallBackMgr注册了一个5s后的时间,5s之后再调用lambda函数,可见一段逻辑被分裂到两个函数,而且还需要上下文的传递(如这里的参数a)。我们用yield来修改一下这个例子,yield返回值代表等待的时间。

@yield_dec
 def do(a):
 print 'do', a
 yield 5
 print 'post_do', a

这里需要实现一个YieldManager, 通过yield_dec这个decrator将do这个generator注册到YieldManager,并在5s后调用next方法。Yield版本实现了和回调一样的功能,但是看起来要清晰许多。

下面给出一个简单的实现以供参考:

# -*- coding:utf-8 -*-
import sys
# import Timer
import types
import time

class YieldManager(object):
 def __init__(self, tick_delta = 0.01):
 self.generator_dict = {}
 # self._tick_timer = Timer.addRepeatTimer(tick_delta, lambda: self.tick())

 def tick(self):
 cur = time.time()
 for gene, t in self.generator_dict.items():
  if cur >= t:
  self._do_resume_genetator(gene,cur)

 def _do_resume_genetator(self,gene, cur ):
 try:
  self.on_generator_excute(gene, cur)
 except StopIteration,e:
  self.remove_generator(gene)
 except Exception, e:
  print 'unexcepet error', type(e)
  self.remove_generator(gene)

 def add_generator(self, gen, deadline):
 self.generator_dict[gen] = deadline

 def remove_generator(self, gene):
 del self.generator_dict[gene]

 def on_generator_excute(self, gen, cur_time = None):
 t = gen.next()
 cur_time = cur_time or time.time()
 self.add_generator(gen, t + cur_time)

g_yield_mgr = YieldManager()

def yield_dec(func):
 def _inner_func(*args, **kwargs):
 gen = func(*args, **kwargs)
 if type(gen) is types.GeneratorType:
  g_yield_mgr.on_generator_excute(gen)

 return gen
 return _inner_func

@yield_dec
def do(a):
 print 'do', a
 yield 2.5
 print 'post_do', a
 yield 3
 print 'post_do again', a

if __name__ == '__main__':
 do(1)
 for i in range(1, 10):
 print 'simulate a timer, %s seconds passed' % i
 time.sleep(1)
 g_yield_mgr.tick()

注意事项:

(1)Yield是不能嵌套的!

def visit(data):
 for elem in data:
 if isinstance(elem, tuple) or isinstance(elem, list):
  visit(elem) # here value retuened is generator
 else:
  yield elem
  
if __name__ == '__main__':
 for e in visit([1, 2, (3, 4), 5]):
 print e

上面的代码访问嵌套序列里面的每一个元素,我们期望的输出是1 2 3 4 5,而实际输出是1  2  5 。为什么呢,如注释所示,visit是一个generator function,所以第4行返回的是generator object,而代码也没这个generator实例迭代。那么改改代码,对这个临时的generator 进行迭代就行了。

def visit(data):
 for elem in data:
 if isinstance(elem, tuple) or isinstance(elem, list):
  for e in visit(elem):
  yield e
 else:
  yield elem

或者在python3.3中 可以使用yield from,这个语法是在pep380加入的

def visit(data):
 for elem in data:
  if isinstance(elem, tuple) or isinstance(elem, list):
  yield from visit(elem)
  else:
  yield elem

(2)generator function中使用return

在python doc中,明确提到是可以使用return的,当generator执行到这里的时候抛出StopIteration异常。

def gen_with_return(range_num):
 if range_num < 0:
 return
 else:
 for i in xrange(range_num):
  yield i

if __name__ == '__main__':
 print list(gen_with_return(-1))
 print list(gen_with_return(1))

但是,generator function中的return是不能带任何返回值的

def gen_with_return(range_num):
 if range_num < 0:
  return 0
 else:
  for i in xrange(range_num):
  yield i

上面的代码会报错:SyntaxError: 'return' with argument inside generator

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
Python监控主机是否存活并以邮件报警
Sep 22 Python
深入源码解析Python中的对象与类型
Dec 11 Python
Python for Informatics 第11章之正则表达式(四)
Apr 21 Python
Tornado协程在python2.7如何返回值(实现方法)
Jun 22 Python
python和ruby,我选谁?
Sep 13 Python
django站点管理详解
Dec 12 Python
python读写LMDB文件的方法
Jul 02 Python
Django 多语言教程的实现(i18n)
Jul 07 Python
python把转列表为集合的方法
Jun 28 Python
利用ImageAI库只需几行python代码实现目标检测
Aug 09 Python
使用Keras实现简单线性回归模型操作
Jun 12 Python
opencv-python图像配准(匹配和叠加)的实现
Jun 23 Python
Python中shutil模块的学习笔记教程
Apr 04 #Python
python 遍历字符串(含汉字)实例详解
Apr 04 #Python
python模拟登录并且保持cookie的方法详解
Apr 04 #Python
python 容器总结整理
Apr 04 #Python
详解Python中最难理解的点-装饰器
Apr 03 #Python
JSON Web Tokens的实现原理
Apr 02 #Python
Python 40行代码实现人脸识别功能
Apr 02 #Python
You might like
Mysql的GROUP_CONCAT()函数使用方法
2008/03/28 PHP
php 将bmp图片转为jpg等其他任意格式的图片
2009/06/21 PHP
163的邮件用phpmailer发送(实例详解)
2013/06/24 PHP
php mb_substr()函数截取中文字符串应用示例
2014/07/29 PHP
jQuery得到多个值只能用取Class ,不能用取ID的方法
2016/12/04 Javascript
利用vue写todolist单页应用
2016/12/15 Javascript
vue实现简单实时汇率计算功能
2017/01/15 Javascript
jQuery表单设置值的方法
2017/06/30 jQuery
js匿名函数使用&amp;传参(实例)
2017/09/08 Javascript
微信小程序使用request网络请求操作实例
2017/12/15 Javascript
如何在Vue项目中添加接口监听遮罩
2021/01/25 Vue.js
[02:06]DOTA2肉山黑名单魔法终结者 敌法师中文配音鉴赏
2013/06/17 DOTA
Python 拷贝对象(深拷贝deepcopy与浅拷贝copy)
2008/09/06 Python
详解Python中的条件判断语句
2015/05/14 Python
举例详解Python中yield生成器的用法
2015/08/05 Python
Atom Python 配置Python3 解释器的方法
2019/08/28 Python
python 魔法函数实例及解析
2019/09/25 Python
在OpenCV里使用特征匹配和单映射变换的代码详解
2019/10/23 Python
Python numpy数组转置与轴变换
2019/11/15 Python
python numpy 反转 reverse示例
2019/12/04 Python
TensorFlow查看输入节点和输出节点名称方式
2020/01/04 Python
TensorFlow命名空间和TensorBoard图节点实例
2020/01/23 Python
python数字类型math库原理解析
2020/03/02 Python
python使用paramiko实现ssh的功能详解
2020/03/06 Python
超级实用的8个Python列表技巧
2020/08/24 Python
财务出纳岗位职责
2014/02/03 职场文书
党支部公开承诺践诺书
2014/03/28 职场文书
运动会演讲稿50字
2014/08/25 职场文书
关于工作经历的证明书
2014/10/11 职场文书
社区四风存在问题及整改措施
2014/10/26 职场文书
企业整改报告范文
2014/11/08 职场文书
合同权益转让协议书模板
2014/11/18 职场文书
2015年度公共机构节能工作总结
2015/05/26 职场文书
Python 文本滚动播放器的实现代码
2021/04/25 Python
只用40行Python代码就能写出pdf转word小工具
2021/05/31 Python
MySql中的json_extract函数处理json字段详情
2022/06/05 MySQL