Python 40行代码实现人脸识别功能


Posted in Python onApril 02, 2017

前言

很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。

一点区分

对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。今天我们要做的是人脸识别。

所用工具

Anaconda 2——Python 2

Dlib

scikit-image

Dlib

对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:

pip install dlib

上面需要用到的scikit-image同样只是需要这么一句:

pip install scikit-image

注:如果用pip install dlib安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。

人脸识别

之所以用Dlib来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。今天的例子既然代码不超过40行,其实是没啥难度的。有难度的东西都在源码和论文里。

首先先通过文件树看一下今天需要用到的东西:

Python 40行代码实现人脸识别功能

准备了六个候选人的图片放在candidate-faces文件夹中,然后需要识别的人脸图片test.jpg。我们的工作就是要检测到test.jpg中的人脸,然后判断她到底是候选人中的谁。另外的girl-face-rec.py是我们的python脚本。shape_predictor_68_face_landmarks.dat是已经训练好的人脸关键点检测器。dlib_face_recognition_resnet_model_v1.dat是训练好的ResNet人脸识别模型。ResNet是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 2015 冠军,通过让网络对残差进行学习,在深度和精度上做到了比
CNN 更加强大。

1. 前期准备

shape_predictor_68_face_landmarks.datdlib_face_recognition_resnet_model_v1.dat都可以在这里找到。不能点击超链接的可以直接输入以下网址:http://dlib.net/files/。

然后准备几个人的人脸图片作为候选人脸,最好是正脸。放到candidate-faces文件夹中。

本文这里准备的是六张图片,如下:

Python 40行代码实现人脸识别功能

她们分别是

Python 40行代码实现人脸识别功能

然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:

Python 40行代码实现人脸识别功能

可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张图片微微侧脸,而且右侧有阴影。

2.识别流程

数据准备完毕,接下来就是代码了。识别的大致流程是这样的:

  • 先对候选人进行人脸检测、关键点提取、描述子生成后,把候选人描述子保存起来。
  • 然后对测试人脸进行人脸检测、关键点提取、描述子生成。
  • 最后求测试图像人脸描述子和候选人脸描述子之间的欧氏距离,距离最小者判定为同一个人。

3.代码

代码不做过多解释,因为已经注释的非常完善了。以下是girl-face-rec.py

# -*- coding: UTF-8 -*-
import sys,os,dlib,glob,numpy
from skimage import io
if len(sys.argv) != 5:
 print "请检查参数是否正确"
 exit()
# 1.人脸关键点检测器
predictor_path = sys.argv[1]
# 2.人脸识别模型
face_rec_model_path = sys.argv[2]
# 3.候选人脸文件夹
faces_folder_path = sys.argv[3]
# 4.需识别的人脸
img_path = sys.argv[4]
# 1.加载正脸检测器
detector = dlib.get_frontal_face_detector()
# 2.加载人脸关键点检测器
sp = dlib.shape_predictor(predictor_path)
# 3. 加载人脸识别模型
facerec = dlib.face_recognition_model_v1(face_rec_model_path)
# win = dlib.image_window()
# 候选人脸描述子list
descriptors = []
# 对文件夹下的每一个人脸进行:
# 1.人脸检测
# 2.关键点检测
# 3.描述子提取
for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
 print("Processing file: {}".format(f))
 img = io.imread(f)
 #win.clear_overlay()
 #win.set_image(img)
 # 1.人脸检测
 dets = detector(img, 1)
 print("Number of faces detected: {}".format(len(dets)))
 for k, d in enumerate(dets): 
  # 2.关键点检测
  shape = sp(img, d)
  # 画出人脸区域和和关键点
  # win.clear_overlay()
  # win.add_overlay(d)
  # win.add_overlay(shape)
  # 3.描述子提取,128D向量
  face_descriptor = facerec.compute_face_descriptor(img, shape)
  # 转换为numpy array
  v = numpy.array(face_descriptor) 
  descriptors.append(v)
# 对需识别人脸进行同样处理
# 提取描述子,不再注释
img = io.imread(img_path)
dets = detector(img, 1)
dist = []
for k, d in enumerate(dets):
 shape = sp(img, d)
 face_descriptor = facerec.compute_face_descriptor(img, shape)
 d_test = numpy.array(face_descriptor) 
 # 计算欧式距离
 for i in descriptors:
  dist_ = numpy.linalg.norm(i-d_test)
  dist.append(dist_)
# 候选人名单
candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']
# 候选人和距离组成一个dict
c_d = dict(zip(candidate,dist))
cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])
print "\n The person is: ",cd_sorted[0][0] 
dlib.hit_enter_to_continue()

4.运行结果

我们在.py所在的文件夹下打开命令行,运行如下命令

python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg

由于shape_predictor_68_face_landmarks.datdlib_face_recognition_resnet_model_v1.dat名字实在太长,所以我把它们重命名为1.dat和2.dat。

运行结果如下:

The person is Bingbing。

记忆力不好的同学可以翻上去看看test1.jpg是谁的图片。有兴趣的话可以把四张测试图片都运行下试试。

这里需要说明的是,前三张图输出结果都是非常理想的。但是第四张测试图片的输出结果是候选人4。对比一下两张图片可以很容易发现混淆的原因。

机器毕竟不是人,机器的智能还需要人来提升。

有兴趣的同学可以继续深入研究如何提升识别的准确率。比如每个人的候选图片用多张,然后对比和每个人距离的平均值之类的。全凭自己了。

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持三水点靠木!

Python 相关文章推荐
讲解Python中运算符使用时的优先级
May 14 Python
python简单分割文件的方法
Jul 30 Python
Python实现好友全头像的拼接实例(推荐)
Jun 24 Python
利用Python暴力破解zip文件口令的方法详解
Dec 21 Python
深入了解Python中pop和remove的使用方法
Jan 09 Python
详解Python 协程的详细用法使用和例子
Jun 15 Python
python实现爬山算法的思路详解
Apr 09 Python
详解用python实现基本的学生管理系统(文件存储版)(python3)
Apr 25 Python
谈一谈基于python的面向对象编程基础
May 21 Python
Python搭建Spark分布式集群环境
Jul 05 Python
利用Python将图片中扭曲矩形的复原
Sep 07 Python
Python 批量下载阴阳师网站壁纸
May 19 Python
Python可变参数用法实例分析
Apr 02 #Python
Python编程实现数学运算求一元二次方程的实根算法示例
Apr 02 #Python
Python中selenium实现文件上传所有方法整理总结
Apr 01 #Python
详解Python多线程Selenium跨浏览器测试
Apr 01 #Python
Python 基础之字符串string详解及实例
Apr 01 #Python
Python中格式化format()方法详解
Apr 01 #Python
Python 中开发pattern的string模板(template) 实例详解
Apr 01 #Python
You might like
PHP文件大小格式化函数合集
2014/03/10 PHP
PHP实现数组根据某个单元字段排序操作示例
2018/08/01 PHP
Jquery显示、隐藏元素以及添加删除样式
2013/08/09 Javascript
JS来动态的修改url实现对url的增删查改
2014/09/05 Javascript
JavaScript设计模式之适配器模式介绍
2014/12/28 Javascript
javascript中createElement的两种创建方式
2015/05/14 Javascript
JavaScript编程的单例设计模讲解
2015/11/10 Javascript
详解JavaScript基于面向对象之继承
2015/12/13 Javascript
jQuery+ajax实现文章点赞功能的方法
2015/12/31 Javascript
jQuery版本升级踩坑大全
2016/01/12 Javascript
jquery easyui datagrid实现增加,修改,删除方法总结
2016/05/25 Javascript
javascript作用域、作用域链(菜鸟必看)
2016/06/16 Javascript
Javascript json object 与string 相互转换的简单实现
2016/09/27 Javascript
JS禁止查看网页源代码的实现方法
2016/10/12 Javascript
layui动态绑定事件的方法
2019/09/20 Javascript
Vue实现多标签选择器
2019/11/28 Javascript
解决在Vue中使用axios POST请求变成OPTIONS的问题
2020/08/14 Javascript
js实现随机点名
2021/01/19 Javascript
[42:32]DOTA2上海特级锦标赛B组资格赛#2 Fnatic VS Spirit第二局
2016/02/27 DOTA
[01:12:08]LGD vs OG 2019国际邀请赛淘汰赛 胜者组 BO3 第一场 8.24
2019/09/10 DOTA
利用numpy实现一、二维数组的拼接简单代码示例
2017/12/15 Python
Python网络爬虫中的同步与异步示例详解
2018/02/03 Python
Django实战之用户认证(初始配置)
2018/07/16 Python
Python3实现对列表按元组指定列进行排序的方法分析
2018/12/22 Python
Django异步任务线程池实现原理
2019/12/17 Python
详解java调用python的几种用法(看这篇就够了)
2020/12/10 Python
详解canvas多边形(蜘蛛图)的画法示例
2018/01/29 HTML / CSS
HTML5实现移动端弹幕动画效果
2019/08/01 HTML / CSS
Tenstickers法国:墙贴和装饰贴纸
2019/08/26 全球购物
精细化工应届生求职信
2013/11/17 职场文书
工商管理毕业生推荐信
2013/12/24 职场文书
出生医学证明样本
2014/01/17 职场文书
毕业生大学生活自我总结
2014/01/31 职场文书
副处级干部考察材料
2014/05/17 职场文书
初中班级口号霸气押韵
2015/12/24 职场文书
pytorch实现手写数字图片识别
2021/05/20 Python