Cython 三分钟入门教程


Posted in Python onSeptember 17, 2009

作者:perrygeo
译者:赖勇浩(http://laiyonghao.com)
原文:http://www.perrygeo.net/wordpress/?p=116

我最喜欢的是Python,它的代码优雅而实用,可惜纯粹从速度上来看它比大多数语言都要慢。大多数人也认为的速度和易于使用是两极对立的——编写C代码的确非常痛苦。而 Cython 试图消除这种两重性,并让你同时拥有 Python 的语法和 C 数据类型和函数——它们两个都是世界上最好的。请记住,我绝不是我在这方面的专家,这是我的第一次Cython真实体验的笔记:

编辑:根据一些我收到的反馈,大家似乎有点混淆——Cython是用来生成 C 扩展到而不是独立的程序的。所有的加速都是针对一个已经存在的 Python 应用的一个函数进行的。没有使用 C 或 Lisp 重写整个应用程序,也没有手写C扩展 。只是用一个简单的方法来整合C的速度和C数据类型到 Python 函数中去。

现在可以说,我们能使下文的 great_circle 函数更快。所谓 great_circle 是计算沿地球表面两点之间的距离的问题:

p1.py

import math

 

def great_circle(lon1,lat1,lon2,lat2):

    radius = 3956 #miles

    x = math.pi/180.0

 

    a = (90.0-lat1)*(x)

    b = (90.0-lat2)*(x)

    theta = (lon2-lon1)*(x)

    c = math.acos((math.cos(a)*math.cos(b)) +

                  (math.sin(a)*math.sin(b)*math.cos(theta)))

    return radius*c

让我们调用它 50 万次并测定它的时间 :

import timeit 

 

lon1, lat1, lon2, lat2 = -72.345, 34.323, -61.823, 54.826

num = 500000

 

t = timeit.Timer("p1.great_circle(%f,%f,%f,%f)" % (lon1,lat1,lon2,lat2),

                       "import p1")

print "Pure python function", t.timeit(num), "sec"

约2.2秒 。它太慢了!

让我们试着快速地用Cython改写它,然后看看是否有差别:
c1.pyx

import math

 

def great_circle(float lon1,float lat1,float lon2,float lat2):

    cdef float radius = 3956.0

    cdef float pi = 3.14159265

    cdef float x = pi/180.0

    cdef float a,b,theta,c

 

    a = (90.0-lat1)*(x)

    b = (90.0-lat2)*(x)

    theta = (lon2-lon1)*(x)

    c = math.acos((math.cos(a)*math.cos(b)) + (math.sin(a)*math.sin(b)*math.cos(theta)))

    return radius*c

请注意,我们仍然import math——cython让您在一定程度上混搭Python和C数据类型在。转换是自动的,但并非没有代价。在这个例子中我们所做的就是定义一个Python函数,声明它的输入参数是浮点数类型,并为所有变量声明类型为C浮点数据类型。计算部分它仍然使用了Python的 math 模块。

现在我们需要将其转换为C代码再编译为Python扩展。完成这一部的最好的办法是编写一个名为setup.py发布脚本。但是,现在我们用手工方式 ,以了解其中的巫术:

# this will create a c1.c file - the C source code to build a python extension

cython c1.pyx

 

# Compile the object file

gcc -c -fPIC -I/usr/include/python2.5/ c1.c

 

# Link it into a shared library

gcc -shared c1.o -o c1.so

现在你应该有一个c1.so(或.dll)文件,它可以被Python import。现在运行一下:

    t = timeit.Timer("c1.great_circle(%f,%f,%f,%f)" % (lon1,lat1,lon2,lat2),

                     "import c1")

    print "Cython function (still using python math)", t.timeit(num), "s

约1.8秒 。并没有我们一开始期望的那种大大的性能提升。使用 python 的 match 模块应该是瓶颈。现在让我们使用C标准库替代之:

c2.pyx

cdef extern from "math.h":

    float cosf(float theta)

    float sinf(float theta)

    float acosf(float theta)

 

def great_circle(float lon1,float lat1,float lon2,float lat2):

    cdef float radius = 3956.0

    cdef float pi = 3.14159265

    cdef float x = pi/180.0

    cdef float a,b,theta,c

 

    a = (90.0-lat1)*(x)

    b = (90.0-lat2)*(x)

    theta = (lon2-lon1)*(x)

    c = acosf((cosf(a)*cosf(b)) + (sinf(a)*sinf(b)*cosf(theta)))

    return radius*cec"

与 import math 相应,我们使用cdef extern 的方式使用从指定头文件声明函数(在此就是使用C标准库的math.h)。我们替代了代价高昂的的Python函数,然后建立新的共享库,并重新测试:

    t = timeit.Timer("c2.great_circle(%f,%f,%f,%f)" % (lon1,lat1,lon2,lat2),

                     "import c2")

    print "Cython function (using trig function from math.h)", t.timeit(num), "sec"

现在有点喜欢它了吧?0.4秒 -比纯Python函数有5倍的速度增长。我们还有什么方法可以再提高速度?c2.great_circle()仍是一个Python函数调用,这意味着它产生Python的API的开销(构建参数元组等),如果我们可以写一个纯粹的C函数的话,我们也许能够加快速度。

c3.pyx

cdef extern from "math.h":

    float cosf(float theta)

    float sinf(float theta)

    float acosf(float theta)

 

cdef float _great_circle(float lon1,float lat1,float lon2,float lat2):

    cdef float radius = 3956.0

    cdef float pi = 3.14159265

    cdef float x = pi/180.0

    cdef float a,b,theta,c

 

    a = (90.0-lat1)*(x)

    b = (90.0-lat2)*(x)

    theta = (lon2-lon1)*(x)

    c = acosf((cosf(a)*cosf(b)) + (sinf(a)*sinf(b)*cosf(theta)))

    return radius*c

 

def great_circle(float lon1,float lat1,float lon2,float lat2,int num):

    cdef int i

    cdef float x

    for i from 0 < = i < num:

        x = _great_circle(lon1,lat1,lon2,lat2)

    return x

请注意,我们仍然有一个Python函数( def ),它接受一个额外的参数 num。这个函数里的循环使用for i from 0 < = i < num: ,而不是更Pythonic,但慢得多的for i in range(num):。真正的计算工作是在C函数(cdef)中进行的,它返回float类型。这个版本只要0.2秒——比原先的Python函数速度提高10倍。

为了证明我们所做的已经足够优化,可以用纯C写一个小应用,然后测定时间:

#include <math .h>

#include <stdio .h>

#define NUM 500000

 

float great_circle(float lon1, float lat1, float lon2, float lat2){

    float radius = 3956.0;

    float pi = 3.14159265;

    float x = pi/180.0;

    float a,b,theta,c;

 

    a = (90.0-lat1)*(x);

    b = (90.0-lat2)*(x);

    theta = (lon2-lon1)*(x);

    c = acos((cos(a)*cos(b)) + (sin(a)*sin(b)*cos(theta)));

    return radius*c;

}

 

int main() {

    int i;

    float x;

    for (i=0; i < = NUM; i++)

        x = great_circle(-72.345, 34.323, -61.823, 54.826);

    printf("%f", x);

}

用gcc -lm -o ctest ctest.c编译它,测试用time ./ctest ...大约0.2秒 。这使我有信心,我Cython扩展相对于我的C代码也极有效率(这并不是说我的C编程能力很弱)。

能够用 cython 优化多少性能通常取决于有多少循环,数字运算和Python函数调用,这些都会让程序变慢。已经有一些人报告说在某些案例上 100 至 1000 倍的速度提升。至于其他的任务,可能不会那么有用。在疯狂地用 Cython 重写 Python 代码之前,记住这一点:

"我们应该忘记小的效率,过早的优化是一切罪恶的根源,有 97% 的案例如此。"——Donald Knuth

换句话说,先用 Python 编写程序,然后看它是否能够满足需要。大多数情况下,它的性能已经足够好了……但有时候真的觉得慢了,那就使用分析器找到瓶颈函数,然后用cython重写,很快就能够得到更高的性能。

外部链接
WorldMill(http://trac.gispython.org/projects/PCL/wiki/WorldMill)——由Sean Gillies 用 Cython 编写的一个快速的,提供简洁的 python 接口的模块,封装了用以处理矢量地理空间数据的 libgdal 库。

编写更快的 Pyrex 代码(http://www.sagemath.org:9001/WritingFastPyrexCode)——Pyrex,是 Cython 的前身,它们有类似的目标和语法。

Python 相关文章推荐
python实现dict版图遍历示例
Feb 19 Python
Python编程语言的35个与众不同之处(语言特征和使用技巧)
Jul 07 Python
用python实现简单EXCEL数据统计的实例
Jan 24 Python
Python入门_浅谈字符串的分片与索引、字符串的方法
May 16 Python
Python3编程实现获取阿里云ECS实例及监控的方法
Aug 18 Python
python连接数据库的方法
Oct 19 Python
python在线编译器的简单原理及简单实现代码
Feb 02 Python
TensorFlow卷积神经网络之使用训练好的模型识别猫狗图片
Mar 14 Python
Django中使用Whoosh进行全文检索的方法
Mar 31 Python
python 寻找离散序列极值点的方法
Jul 10 Python
Python浮点数四舍五入问题的分析与解决方法
Nov 19 Python
Python+Selenium随机生成手机验证码并检查页面上是否弹出重复手机号码提示框
Sep 21 Python
phpsir 开发 一个检测百度关键字网站排名的python 程序
Sep 17 #Python
PHP webshell检查工具 python实现代码
Sep 15 #Python
python encode和decode的妙用
Sep 02 #Python
python 简易计算器程序,代码就几行
Aug 29 #Python
python 提取文件的小程序
Jul 29 #Python
Python 文件重命名工具代码
Jul 26 #Python
python 生成目录树及显示文件大小的代码
Jul 23 #Python
You might like
php下安装配置fckeditor编辑器的方法
2011/03/02 PHP
详解EventDispatcher事件分发组件
2016/12/25 PHP
使用TextRange获取输入框中光标的位
2006/10/14 Javascript
js根据给定的日期计算当月有多少天实现思路及代码
2013/02/25 Javascript
详解JavaScript函数绑定
2013/08/18 Javascript
jquery实现checkbox全选全不选的简单实例
2013/12/31 Javascript
Javascript判断图片尺寸大小实例分析
2014/06/16 Javascript
Css3制作变形与动画效果
2015/07/24 Javascript
微信小程序 支付简单实例及注意事项
2017/01/06 Javascript
javascript中apply/call和bind的使用
2017/02/15 Javascript
使用socket.io制做简易WEB聊天室
2018/01/02 Javascript
详解Vue项目中出现Loading chunk {n} failed问题的解决方法
2018/09/14 Javascript
vue中提示$index is not defined错误的解决方式
2020/09/02 Javascript
OpenLayers3实现鼠标移动显示坐标
2020/09/25 Javascript
[09:13]2014DOTA2国际邀请赛 中国区预选赛coser表演
2014/05/23 DOTA
[48:26]VGJ.S vs infamous Supermajor 败者组 BO3 第二场 6.4
2018/06/05 DOTA
python 参数列表中的self 显式不等于冗余
2008/12/01 Python
Python中的__new__与__init__魔术方法理解笔记
2014/11/08 Python
Python中使用pprint函数进行格式化输出的教程
2015/04/07 Python
Python创建模块及模块导入的方法
2015/05/27 Python
在CentOS6上安装Python2.7的解决方法
2018/01/09 Python
python3+PyQt5 创建多线程网络应用-TCP客户端和TCP服务器实例
2019/06/17 Python
Python求均值,方差,标准差的实例
2019/06/29 Python
Django values()和value_list()的使用
2020/03/31 Python
python3中布局背景颜色代码分析
2020/12/01 Python
手对手的教你用canvas画一个简单的海报的方法示例
2018/12/10 HTML / CSS
美体小铺印度官网:The Body Shop印度
2019/10/17 全球购物
Python是如何进行类型转换的
2013/06/09 面试题
外贸主管求职简历的自我评价
2013/10/23 职场文书
网络专业学生个人的自我评价
2013/12/16 职场文书
运动会800米加油稿
2014/02/22 职场文书
应届生求职信
2014/05/31 职场文书
幼儿园社区活动总结
2014/07/07 职场文书
党员批评与自我批评思想汇报(集锦)
2014/09/14 职场文书
深入理解python多线程编程
2021/04/18 Python
Python Django获取URL中的数据详解
2021/11/01 Python