Python编程语言的35个与众不同之处(语言特征和使用技巧)


Posted in Python onJuly 07, 2014

一、Python介绍

从我开始学习Python时我就决定维护一个经常使用的“窍门”列表。不论何时当我看到一段让我觉得“酷,这样也行!”的代码时(在一个例子中、在StackOverflow、在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中。这篇文章是清理过列表的一部分。如果你是一个有经验的Python程序员,尽管你可能已经知道一些,但你仍能发现一些你不知道的。如果你是一个正在学习Python的C、C++或Java程序员,或者刚开始学习编程,那么你会像我一样发现它们中的很多非常有用。

每个窍门或语言特性只能通过实例来验证,无需过多解释。虽然我已尽力使例子清晰,但它们中的一些仍会看起来有些复杂,这取决于你的熟悉程度。所以如果看过例子后还不清楚的话,标题能够提供足够的信息让你通过Google获取详细的内容。

二、Python的语言特征

列表按难度排序,常用的语言特征和技巧放在前面。

1. 分拆

>>> a, b, c = 1, 2, 3

>>> a, b, c

(1, 2, 3)

>>> a, b, c = [1, 2, 3]

>>> a, b, c

(1, 2, 3)

>>> a, b, c = (2 * i + 1 for i in range(3))

>>> a, b, c

(1, 3, 5)

>>> a, (b, c), d = [1, (2, 3), 4]

>>> a

1

>>> b

2

>>> c

3

>>> d

4

2.交换变量分拆

>>> a, b = 1, 2

>>> a, b = b, a

>>> a, b

(2, 1)

3.拓展分拆 (Python 3下适用)

>>> a, *b, c = [1, 2, 3, 4, 5]

>>> a

1

>>> b

[2, 3, 4]

>>> c

5

4.负索引
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[-1]

10

>>> a[-3]

8

5.列表切片 (a[start:end])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[2:8]

[2, 3, 4, 5, 6, 7]

6.使用负索引的列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[-4:-2]

[7, 8]

7.带步进值的列表切片 (a[start:end:step])
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[::2]

[0, 2, 4, 6, 8, 10]

>>> a[::3]

[0, 3, 6, 9]

>>> a[2:8:2]

[2, 4, 6]

8.负步进值得列表切片
>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> a[::-1]

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

>>> a[::-2]

[10, 8, 6, 4, 2, 0]

9.列表切片赋值
>>> a = [1, 2, 3, 4, 5]

>>> a[2:3] = [0, 0]

>>> a

[1, 2, 0, 0, 4, 5]

>>> a[1:1] = [8, 9]

>>> a

[1, 8, 9, 2, 0, 0, 4, 5]

>>> a[1:-1] = []

>>> a

[1, 5]

10.命名切片 (slice(start, end, step))
>>> a = [0, 1, 2, 3, 4, 5]

>>> LASTTHREE = slice(-3, None)

>>> LASTTHREE

slice(-3, None, None)

>>> a[LASTTHREE]

[3, 4, 5]

11.zip打包解包列表和倍数
>>> a = [1, 2, 3]

>>> b = ['a', 'b', 'c']

>>> z = zip(a, b)

>>> z

[(1, 'a'), (2, 'b'), (3, 'c')]

>>> zip(*z)

[(1, 2, 3), ('a', 'b', 'c')]

12.使用zip合并相邻的列表项
>>> a = [1, 2, 3, 4, 5, 6]

>>> zip(*([iter(a)] * 2))

[(1, 2), (3, 4), (5, 6)]

 

>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

 

>>> zip(a[::2], a[1::2])

[(1, 2), (3, 4), (5, 6)]

 

>>> zip(a[::3], a[1::3], a[2::3])

[(1, 2, 3), (4, 5, 6)]

 

>>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

13.使用zip和iterators生成滑动窗口 (n -grams)
>>> from itertools import islice

>>> def n_grams(a, n):

...     z = (islice(a, i, None) for i in range(n))

...     return zip(*z)

...

>>> a = [1, 2, 3, 4, 5, 6]

>>> n_grams(a, 3)

[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]

>>> n_grams(a, 2)

[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]

>>> n_grams(a, 4)

[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

14.使用zip反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m.items()

[('a', 1), ('c', 3), ('b', 2), ('d', 4)]

>>> zip(m.values(), m.keys())

[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]

>>> mi = dict(zip(m.values(), m.keys()))

>>> mi

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

15.摊平列表:
>>> a = [[1, 2], [3, 4], [5, 6]]

>>> list(itertools.chain.from_iterable(a))

[1, 2, 3, 4, 5, 6]

 

>>> sum(a, [])

[1, 2, 3, 4, 5, 6]

 

>>> [x for l in a for x in l]

[1, 2, 3, 4, 5, 6]

 

>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

>>> [x for l1 in a for l2 in l1 for x in l2]

[1, 2, 3, 4, 5, 6, 7, 8]

 

>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]

>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]

>>> flatten(a)

[1, 2, 3, 4, 5, 6, 7, 8]

 

注意: 根据Python的文档,itertools.chain.from_iterable是首选。

16.生成器表达式

>>> g = (x ** 2 for x in xrange(10))

>>> next(g)

0

>>> next(g)

1

>>> next(g)

4

>>> next(g)

9

>>> sum(x ** 3 for x in xrange(10))

2025

>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)

408

17.迭代字典
>>> m = {x: x ** 2 for x in range(5)}

>>> m

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

 

>>> m = {x: 'A' + str(x) for x in range(10)}

>>> m

{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}

18.通过迭代字典反转字典
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m

{'d': 4, 'a': 1, 'b': 2, 'c': 3}

>>> {v: k for k, v in m.items()}

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

19.命名序列 (collections.namedtuple)
>>> Point = collections.namedtuple('Point', ['x', 'y'])

>>> p = Point(x=1.0, y=2.0)

>>> p

Point(x=1.0, y=2.0)

>>> p.x

1.0

>>> p.y

2.0

20.命名列表的继承:
>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):

...     __slots__ = ()

...     def __add__(self, other):

...             return Point(x=self.x + other.x, y=self.y + other.y)

...

>>> p = Point(x=1.0, y=2.0)

>>> q = Point(x=2.0, y=3.0)

>>> p + q

Point(x=3.0, y=5.0)

21.集合及集合操作
>>> A = {1, 2, 3, 3}

>>> A

set([1, 2, 3])

>>> B = {3, 4, 5, 6, 7}

>>> B

set([3, 4, 5, 6, 7])

>>> A | B

set([1, 2, 3, 4, 5, 6, 7])

>>> A & B

set([3])

>>> A - B

set([1, 2])

>>> B - A

set([4, 5, 6, 7])

>>> A ^ B

set([1, 2, 4, 5, 6, 7])

>>> (A ^ B) == ((A - B) | (B - A))

True

22.多重集及其操作 (collections.Counter)
>>> A = collections.Counter([1, 2, 2])

>>> B = collections.Counter([2, 2, 3])

>>> A

Counter({2: 2, 1: 1})

>>> B

Counter({2: 2, 3: 1})

>>> A | B

Counter({2: 2, 1: 1, 3: 1})

>>> A & B

Counter({2: 2})

>>> A + B

Counter({2: 4, 1: 1, 3: 1})

>>> A - B

Counter({1: 1})

>>> B - A

Counter({3: 1})

23.迭代中最常见的元素 (collections.Counter)
>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])

>>> A

Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})

>>> A.most_common(1)

[(3, 4)]

>>> A.most_common(3)

[(3, 4), (1, 2), (2, 2)]

24.双端队列 (collections.deque)
>>> Q = collections.deque()

>>> Q.append(1)

>>> Q.appendleft(2)

>>> Q.extend([3, 4])

>>> Q.extendleft([5, 6])

>>> Q

deque([6, 5, 2, 1, 3, 4])

>>> Q.pop()

4

>>> Q.popleft()

6

>>> Q

deque([5, 2, 1, 3])

>>> Q.rotate(3)

>>> Q

deque([2, 1, 3, 5])

>>> Q.rotate(-3)

>>> Q

deque([5, 2, 1, 3])

25.有最大长度的双端队列 (collections.deque)
>>> last_three = collections.deque(maxlen=3)

>>> for i in xrange(10):

...     last_three.append(i)

...     print ', '.join(str(x) for x in last_three)

...

0

0, 1

0, 1, 2

1, 2, 3

2, 3, 4

3, 4, 5

4, 5, 6

5, 6, 7

6, 7, 8

7, 8, 9

26.字典排序 (collections.OrderedDict)
>>> m = dict((str(x), x) for x in range(10))

>>> print ', '.join(m.keys())

1, 0, 3, 2, 5, 4, 7, 6, 9, 8

>>> m = collections.OrderedDict((str(x), x) for x in range(10))

>>> print ', '.join(m.keys())

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))

>>> print ', '.join(m.keys())

10, 9, 8, 7, 6, 5, 4, 3, 2, 1

27.缺省字典 (collections.defaultdict)
>>> m = dict()

>>> m['a']

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

KeyError: 'a'

>>>

>>> m = collections.defaultdict(int)

>>> m['a']

0

>>> m['b']

0

>>> m = collections.defaultdict(str)

>>> m['a']

''

>>> m['b'] += 'a'

>>> m['b']

'a'

>>> m = collections.defaultdict(lambda: '[default value]')

>>> m['a']

'[default value]'

>>> m['b']

'[default value]'

28. 用缺省字典表示简单的树
>>> import json

>>> tree = lambda: collections.defaultdict(tree)

>>> root = tree()

>>> root['menu']['id'] = 'file'

>>> root['menu']['value'] = 'File'

>>> root['menu']['menuitems']['new']['value'] = 'New'

>>> root['menu']['menuitems']['new']['onclick'] = 'new();'

>>> root['menu']['menuitems']['open']['value'] = 'Open'

>>> root['menu']['menuitems']['open']['onclick'] = 'open();'

>>> root['menu']['menuitems']['close']['value'] = 'Close'

>>> root['menu']['menuitems']['close']['onclick'] = 'close();'

>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))

{

    "menu": {

        "id": "file",

        "menuitems": {

            "close": {

                "onclick": "close();",

                "value": "Close"

            },

            "new": {

                "onclick": "new();",

                "value": "New"

            },

            "open": {

                "onclick": "open();",

                "value": "Open"

            }

        },

        "value": "File"

    }

}

 

(到https://gist.github.com/hrldcpr/2012250查看详情)

29.映射对象到唯一的序列数 (collections.defaultdict)

>>> import itertools, collections

>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)

>>> value_to_numeric_map['a']

0

>>> value_to_numeric_map['b']

1

>>> value_to_numeric_map['c']

2

>>> value_to_numeric_map['a']

0

>>> value_to_numeric_map['b']

1

30.最大最小元素 (heapq.nlargest和heapq.nsmallest)
>>> a = [random.randint(0, 100) for __ in xrange(100)]

>>> heapq.nsmallest(5, a)

[3, 3, 5, 6, 8]

>>> heapq.nlargest(5, a)

[100, 100, 99, 98, 98]

31.笛卡尔乘积 (itertools.product)
>>> for p in itertools.product([1, 2, 3], [4, 5]):

(1, 4)

(1, 5)

(2, 4)

(2, 5)

(3, 4)

(3, 5)

>>> for p in itertools.product([0, 1], repeat=4):

...     print ''.join(str(x) for x in p)

...

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

32.组合的组合和置换 (itertools.combinations 和 itertools.combinations_with_replacement)
>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):

...     print ''.join(str(x) for x in c)

...

123

124

125

134

135

145

234

235

245

345

>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):

...     print ''.join(str(x) for x in c)

...

11

12

13

22

23

33

33.排序 (itertools.permutations)
>>> for p in itertools.permutations([1, 2, 3, 4]):

...     print ''.join(str(x) for x in p)

...

1234

1243

1324

1342

1423

1432

2134

2143

2314

2341

2413

2431

3124

3142

3214

3241

3412

3421

4123

4132

4213

4231

4312

4321

34.链接的迭代 (itertools.chain)
>>> a = [1, 2, 3, 4]

>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):

...     print p

...

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))

...     print subset

...

()

(1,)

(2,)

(3,)

(4,)

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

(1, 2, 3, 4)

35.按给定值分组行 (itertools.groupby)
>>> from operator import itemgetter

>>> import itertools

>>> with open('contactlenses.csv', 'r') as infile:

...     data = [line.strip().split(',') for line in infile]

...

>>> data = data[1:]

>>> def print_data(rows):

...     print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)

...

 

>>> print_data(data)

young               myope                   no                      reduced                 none

young               myope                   no                      normal                  soft

young               myope                   yes                     reduced                 none

young               myope                   yes                     normal                  hard

young               hypermetrope            no                      reduced                 none

young               hypermetrope            no                      normal                  soft

young               hypermetrope            yes                     reduced                 none

young               hypermetrope            yes                     normal                  hard

pre-presbyopic      myope                   no                      reduced                 none

pre-presbyopic      myope                   no                      normal                  soft

pre-presbyopic      myope                   yes                     reduced                 none

pre-presbyopic      myope                   yes                     normal                  hard

pre-presbyopic      hypermetrope            no                      reduced                 none

pre-presbyopic      hypermetrope            no                      normal                  soft

pre-presbyopic      hypermetrope            yes                     reduced                 none

pre-presbyopic      hypermetrope            yes                     normal                  none

presbyopic          myope                   no                      reduced                 none

presbyopic          myope                   no                      normal                  none

presbyopic          myope                   yes                     reduced                 none

presbyopic          myope                   yes                     normal                  hard

presbyopic          hypermetrope            no                      reduced                 none

presbyopic          hypermetrope            no                      normal                  soft

presbyopic          hypermetrope            yes                     reduced                 none

presbyopic          hypermetrope            yes                     normal                  none

 

>>> data.sort(key=itemgetter(-1))

>>> for value, group in itertools.groupby(data, lambda r: r[-1]):

...     print '-----------'

...     print 'Group: ' + value

...     print_data(group)

...

-----------

Group: hard

young               myope                   yes                     normal                  hard

young               hypermetrope            yes                     normal                  hard

pre-presbyopic      myope                   yes                     normal                  hard

presbyopic          myope                   yes                     normal                  hard

-----------

Group: none

young               myope                   no                      reduced                 none

young               myope                   yes                     reduced                 none

young               hypermetrope            no                      reduced                 none

young               hypermetrope            yes                     reduced                 none

pre-presbyopic      myope                   no                      reduced                 none

pre-presbyopic      myope                   yes                     reduced                 none

pre-presbyopic      hypermetrope            no                      reduced                 none

pre-presbyopic      hypermetrope            yes                     reduced                 none

pre-presbyopic      hypermetrope            yes                     normal                  none

presbyopic          myope                   no                      reduced                 none

presbyopic          myope                   no                      normal                  none

presbyopic          myope                   yes                     reduced                 none

presbyopic          hypermetrope            no                      reduced                 none

presbyopic          hypermetrope            yes                     reduced                 none

presbyopic          hypermetrope            yes                     normal                  none

-----------

Group: soft

young               myope                   no                      normal                  soft

young               hypermetrope            no                      normal                  soft

pre-presbyopic      myope                   no                      normal                  soft

pre-presbyopic      hypermetrope            no                      normal                  soft

presbyopic          hypermetrope            no                      normal 
Python 相关文章推荐
Python程序员鲜为人知但你应该知道的17个问题
Jun 04 Python
python编程开发之日期操作实例分析
Nov 13 Python
Django的信号机制详解
May 05 Python
python的range和linspace使用详解
Nov 27 Python
python连接mongodb集群方法详解
Feb 13 Python
Python使用urllib模块对URL网址中的中文编码与解码实例详解
Feb 18 Python
Python基于Dlib的人脸识别系统的实现
Feb 26 Python
python爬虫开发之使用Python爬虫库requests多线程抓取猫眼电影TOP100实例
Mar 10 Python
tensorflow实现从.ckpt文件中读取任意变量
May 26 Python
Python钉钉报警及Zabbix集成钉钉报警的示例代码
Aug 17 Python
selenium判断元素是否存在的两种方法小结
Dec 07 Python
Appium+Python实现简单的自动化登录测试的实现
Jan 26 Python
python基于mysql实现的简单队列以及跨进程锁实例详解
Jul 07 #Python
python中使用urllib2获取http请求状态码的代码例子
Jul 07 #Python
Python中使用urllib2防止302跳转的代码例子
Jul 07 #Python
python中使用urllib2伪造HTTP报头的2个方法
Jul 07 #Python
python实现多线程采集的2个代码例子
Jul 07 #Python
Python程序员开发中常犯的10个错误
Jul 07 #Python
python采用requests库模拟登录和抓取数据的简单示例
Jul 05 #Python
You might like
PHP 计算代码执行耗时的代码修正网上普遍错误
2011/05/14 PHP
PHP函数http_build_query使用详解
2014/08/20 PHP
php实现的二叉树遍历算法示例
2017/06/15 PHP
Javascript实现滑块滑动改变值的实现代码
2013/04/12 Javascript
Eclipse下jQuery文件报错出现错误提示红叉
2014/01/13 Javascript
javascript 应用小技巧方法汇总
2015/07/05 Javascript
js实现tab切换效果
2017/02/16 Javascript
Vue.js render方法使用详解
2017/04/05 Javascript
vue.js开发环境搭建教程
2017/05/04 Javascript
JavaScript使用Ajax上传文件的示例代码
2017/08/10 Javascript
详解利用 Express 托管静态文件的方法
2017/09/18 Javascript
微信小程序倒计时功能实现代码
2017/11/09 Javascript
加快Vue项目的开发速度的方法
2018/12/12 Javascript
Vue点击切换Class变化,实现Active当前样式操作
2020/07/17 Javascript
vscode中Vue别名路径提示的实现
2020/07/31 Javascript
Jquery $.map使用方法实例详解
2020/09/01 jQuery
解决vue项目运行npm run serve报错的问题
2020/10/26 Javascript
jQuery+ajax实现文件上传功能
2020/12/22 jQuery
动态实现element ui的el-table某列数据不同样式的示例
2021/01/22 Javascript
[55:42]VG vs VGJ.T 2018国际邀请赛淘汰赛BO1 8.21
2018/08/22 DOTA
Ubuntu下Python2与Python3的共存问题
2018/10/31 Python
用python3 返回鼠标位置的实现方法(带界面)
2019/07/05 Python
python高阶函数map()和reduce()实例解析
2020/03/16 Python
python如何解析复杂sql,实现数据库和表的提取的实例剖析
2020/05/15 Python
Django后端按照日期查询的方法教程
2021/02/28 Python
HTML5为输入框添加语音输入功能的实现方法
2017/02/06 HTML / CSS
自荐信范文
2013/12/10 职场文书
旷课检讨书2000字
2014/01/14 职场文书
校园十佳歌手策划书
2014/01/22 职场文书
论文指导教师评语
2014/04/28 职场文书
市场营销毕业求职信
2014/08/07 职场文书
初中优秀教师事迹材料
2014/08/18 职场文书
2014公安机关纪律作风整顿思想汇报
2014/09/13 职场文书
个人对照检查材料思想汇报
2014/09/26 职场文书
靠谱准确的求职信
2019/04/02 职场文书
用Python进行栅格数据的分区统计和批量提取
2021/05/27 Python