OpenCV-Python实现轮廓的特征值


Posted in Python onJune 09, 2021

前言

轮廓自身的一些属性特征及轮廓所包围对象的特征对于描述图像具有重要意义。本篇博文将介绍几个轮廓自身的属性特征及轮廓包围对象的特征。

宽高比

在轮廓中,我们可以通过宽高比来描述轮廓,例如矩形的轮廓宽高比为:

宽高比=宽度/高度

下面,我们来计算矩形轮廓的宽高比,代码如下:

import cv2

img = cv2.imread("26_1.jpg")
cv2.imshow("img", img)

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

x, y, w, h = cv2.boundingRect(contours[0])
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 3)
cv2.imshow("img1", img)

aspectRatio=float(w)/h
print(aspectRatio)

cv2.waitKey()
cv2.destroyAllWindows()

运行之后,我们可以得到轮廓的宽高比约为3:

OpenCV-Python实现轮廓的特征值

Extend

我们还可以使用轮廓面积与矩形边界面积之比Extend来描述图像及其轮廓特征,数学计算公式图下:

Extend=轮廓面积/矩形边界面积

下面,我们来计算Extend,代码如下:

import cv2

img = cv2.imread("26_1.jpg")
cv2.imshow("img", img)

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

x, y, w, h = cv2.boundingRect(contours[0])
rectArea=w*h#矩形边界面积
cntArea=cv2.contourArea(contours[0])#轮廓面积
extend=float(cntArea)/rectArea
print(extend)

本例中,轮廓面积与矩形边界面积的比值Extend大约为0.8:

OpenCV-Python实现轮廓的特征值

Solidity

我们还可以使用轮廓面积与凸包面积之比Solidity来衡量图像,轮廓以及凸包的特征。其数学计算公式为:

Slidity=轮廓面积/凸包面积

下面,我们来计算Slidity,代码如下:

import cv2

img = cv2.imread("26_1.jpg")
cv2.imshow("img", img)

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

x, y, w, h = cv2.boundingRect(contours[0])
cntArea=cv2.contourArea(contours[0])#轮廓面积
hull=cv2.convexHull(contours[0])
hullArea=cv2.contourArea(hull)#凸包面积
solidity=float(cntArea)/hullArea
print(solidity)

运行之后,本例轮廓面积与凸包面积的比值solidity约为1:

OpenCV-Python实现轮廓的特征值

等效直径

在OpenCV中,我们还可以使用等效直径来衡量轮廓的特征值,该值是与轮廓面积相等的圆形的直径。其数学计算公式为:

OpenCV-Python实现轮廓的特征值

下面,我们来计算与轮廓面积相等的圆形直径,代码如下:

import cv2
import numpy as np

img = cv2.imread("26_1.jpg")
cv2.imshow("img", img)

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

x, y, w, h = cv2.boundingRect(contours[0])
cntArea=cv2.contourArea(contours[0])#轮廓面积
equiDiameter=np.sqrt(4*cntArea/np.pi)
print(equiDiameter)
cv2.circle(img,(100,100),int(equiDiameter/2),(0,255,0),3)
cv2.imshow("img1",img)
cv2.waitKey()
cv2.destroyAllWindows()

运行之后,我们得到其等效直径约为145:

OpenCV-Python实现轮廓的特征值

方向

在OpenCV中,函数cv2.fitEllipse()可以用来构建最优拟合椭圆,还可以在返回值内分别返回椭圆的中心点,轴长,旋转角度信息。使用这种形式,能够直观地获取椭圆的方向等信息。

函数cv2.fitEllipse()返回值为:

(x,y):椭圆的中心点

(MA,ma):椭圆水平方向轴与垂直方向轴的长度

angle:椭圆的旋转角度

import cv2

img = cv2.imread("26_1.jpg")
cv2.imshow("img", img)

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

ellipsis=cv2.fitEllipse(contours[0])

(x, y), (MA, ma), angle = cv2.fitEllipse(contours[0])

print((x, y), (MA, ma), angle)

cv2.ellipse(img, ellipsis, (0, 255, 0), 2)
cv2.imshow("img1", img)
cv2.waitKey()
cv2.destroyAllWindows()

本来就是椭圆图,下面拟合后正好也是椭圆:

OpenCV-Python实现轮廓的特征值

掩摸和像素点

有时候,我们还像获取某对象的掩摸图像及其对应的点。在OpenCV中,它还提供了cv2.findNonZero()函数用于获取一个图像内的轮廓点位置,其完整定义如下:

def findNonZero(src, idx=None):

src:要查找非零元素的图像

idx:返回值,表示非0元素的索引位置。具体格式为(行号,列号)

下面,我们实测该函数,代码如下:

import cv2
import numpy as np

img = cv2.imread("26_1.jpg")

cv2.imshow("img", img)

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

mask=np.zeros(gray.shape,np.uint8)
cv2.drawContours(mask,[contours[0]],0,255,2)
pixelpoints=cv2.findNonZero(mask)
print(pixelpoints)

cv2.imshow("img1", mask)
cv2.waitKey()
cv2.destroyAllWindows()

运行之后,我们会得到轮廓点位置:

OpenCV-Python实现轮廓的特征值

最大值,最小值以及它们的位置

在OpenCV中,它提供cv2.minMaxLoc()函数获取指定对象内最大值,最小值以及位置等信息,其完整定义如下:

def minMaxLoc(src, mask=None):

src:单通道图像

mask:掩摸,通过使用掩摸图像,得到掩膜指定区域内的最值信息

该函数返回4个值:最小值,最大值,最小值位置,最大值位置。

下面,我们来获取这些值,代码如下:

import cv2
import numpy as np

img = cv2.imread("26_1.jpg")

cv2.imshow("img", img)

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

mask = np.zeros(gray.shape, np.uint8)
cv2.drawContours(mask, [contours[0]], 0, 255, 2)

min, max, min_loc, max_loc = cv2.minMaxLoc(gray, mask)
print(min, max, min_loc, max_loc)

运行之后,控制台输出4个值:

OpenCV-Python实现轮廓的特征值

平均颜色及平均灰度

在OpenCV中,它给我们提供cv2.mean()函数计算一个对象的平均颜色与平均灰度。其完整定义如下:

def mean(src, mask=None):

参数与上面两个小节一样,这里不在赘述。下面,我们来使用这个函数,代码如下:

import cv2
import numpy as np

img = cv2.imread("26_1.jpg")


cv2.imshow("img", img)

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

mask=np.zeros(gray.shape,np.uint8)
cv2.drawContours(mask,[contours[0]],0,255,2)

mean=cv2.mean(img,mask)

运行之后,输出4个值:RGB以及A通道的均值:

OpenCV-Python实现轮廓的特征值

极点

有时候,我们希望获取某个对象内的极点,比如最左,最右,最上,最下等。在OpenCV中,它给我们提供了以下方法进行获取:

left=tuple(cnt[cnt[:,:,0].argmin()][0])
right=tuple(cnt[cnt[:,:,0].argmax()][0])
top=tuple(cnt[cnt[:,:,1].argmin()][0])
bottom=tuple(cnt[cnt[:,:,1].argmax()][0])

下面,我们来通过这些方法获取,代码如下:

import cv2
import numpy as np

img = cv2.imread("26_1.jpg")

cv2.imshow("img", img)

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

mask = np.zeros(img.shape, np.uint8)
cnt = contours[0]
left = tuple(cnt[cnt[:, :, 0].argmin()][0])
right = tuple(cnt[cnt[:, :, 0].argmax()][0])
top = tuple(cnt[cnt[:, :, 1].argmin()][0])
bottom = tuple(cnt[cnt[:, :, 1].argmax()][0])

print(left, right, top, bottom)

font = cv2.FONT_HERSHEY_SIMPLEX

cv2.putText(img, "left", left, font, 1, (0, 255, 0), 2)
cv2.putText(img, "right", right, font, 1, (0, 255, 0), 2)
cv2.putText(img, "top", top, font, 1, (0, 255, 0), 2)
cv2.putText(img, "bottom", bottom, font, 1, (0, 255, 0), 2)

cv2.imshow("result",img)
cv2.waitKey()
cv2.destroyAllWindows()

运行之后,值与效果如下:

OpenCV-Python实现轮廓的特征值

到此这篇关于OpenCV-Python实现轮廓的特征值的文章就介绍到这了,更多相关OpenCV 轮廓的特征值内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
用Python解析XML的几种常见方法的介绍
Apr 09 Python
Python爬虫框架Scrapy实战之批量抓取招聘信息
Aug 07 Python
Django卸载之后重新安装的方法
Mar 15 Python
Python编程之序列操作实例详解
Jul 22 Python
详解python eval函数的妙用
Nov 16 Python
Python基于贪心算法解决背包问题示例
Nov 27 Python
python队列通信:rabbitMQ的使用(实例讲解)
Dec 22 Python
Python科学计算包numpy用法实例详解
Feb 08 Python
python+splinter实现12306网站刷票并自动购票流程
Sep 25 Python
python 引用传递和值传递详解(实参,形参)
Jun 05 Python
Pycharm创建python文件自动添加日期作者等信息(步骤详解)
Feb 03 Python
教你怎么用PyCharm为同一服务器配置多个python解释器
May 31 Python
再也不用花钱买漫画!Python爬取某漫画的脚本及源码
Jun 09 #Python
Python的这些库,你知道多少?
OpenCV-Python使用cv2实现傅里叶变换
Python合并多张图片成PDF
Jun 09 #Python
Python3 多线程(连接池)操作MySQL插入数据
jupyter notebook保存文件默认路径更改方法汇总(亲测可以)
Django rest framework如何自定义用户表
Jun 09 #Python
You might like
通过html表格发电子邮件
2006/10/09 PHP
FireFox浏览器使用Javascript上传大文件
2013/10/30 PHP
Codeigniter校验ip地址的方法
2015/03/21 PHP
php解析字符串里所有URL地址的方法
2015/04/03 PHP
php 参数过滤、数据过滤详解
2015/10/26 PHP
Yii2 批量插入、更新数据实例
2017/03/15 PHP
jQuery 树形结构的选择器
2010/02/15 Javascript
js 事件处理函数间的Event物件是否全等
2011/04/08 Javascript
javaScript如何生成xmlhttp
2013/12/16 Javascript
jquery自定义下拉列表示例
2014/04/25 Javascript
jquery 表格排序、实时搜索表格内容(附图)
2014/05/19 Javascript
45个JavaScript编程注意事项、技巧大全
2015/02/11 Javascript
node-http-proxy修改响应结果实例代码
2016/06/06 Javascript
jQuery 移动端拖拽(模块化开发,触摸事件,webpack)
2016/10/28 Javascript
vue+vuex+axio从后台获取数据存入vuex实现组件之间共享数据
2017/04/22 Javascript
VUE中的无限循环代码解析
2017/09/22 Javascript
vue.js计算属性computed用法实例分析
2018/07/06 Javascript
详解vue填坑之解决部分浏览器不支持pushState方法
2018/07/12 Javascript
JavaScript创建对象的常用方式总结
2018/08/10 Javascript
vue-cli 2.*中导入公共less文件的方法步骤
2018/11/22 Javascript
微信小程序从注册账号到上架(图文详解)
2019/07/17 Javascript
nodejs 递归拷贝、读取目录下所有文件和目录
2019/07/18 NodeJs
JS操作JSON常用方法(10w阅读)
2020/12/06 Javascript
Python pyinotify日志监控系统处理日志的方法
2018/03/08 Python
python3 dict ndarray 存成json,并保留原数据精度的实例
2019/12/06 Python
基于python的opencv图像处理实现对斑马线的检测示例
2020/11/29 Python
浅析数据存储的三种方式 cookie sessionstorage localstorage 的异同
2020/06/04 HTML / CSS
美国迪克体育用品商店:DICK’S Sporting Goods
2018/07/24 全球购物
iKRIX意大利网上商店:男女豪华服装和配件
2019/10/09 全球购物
Fnac西班牙官网:法国文化和电子产品零售商
2021/03/14 全球购物
公司周年庆典标语
2014/10/07 职场文书
2014年财务经理工作总结
2014/12/08 职场文书
申报材料格式
2014/12/30 职场文书
2015大学生求职信范文
2015/03/20 职场文书
元宵节晚会主持词
2015/07/01 职场文书
我的收音机情缘
2022/04/05 无线电