Python3 多线程(连接池)操作MySQL插入数据


Posted in Python onJune 09, 2021

多线程(连接池)操作MySQL插入数据

针对于此篇博客的收获心得:

  • 首先是可以构建连接数据库的连接池,这样可以多开启连接,同一时间连接不同的数据表进行查询,插入,为多线程进行操作数据库打基础
  • 多线程根据多连接的方式,需求中要完成多语言的入库操作,我们可以启用多线程对不同语言数据进行并行操作
  • 在插入过程中,一条一插入,比较浪费时间,我们可以把数据进行积累,积累到一定的条数的时候,执行一条sql命令,一次性将多条数据插入到数据库中,节省时间cur.executemany

1.主要模块

DBUtils : 允许在多线程应用和数据库之间连接的模块套件
Threading : 提供多线程功能

2.创建连接池

PooledDB 基本参数:

  • mincached : 最少的空闲连接数,如果空闲连接数小于这个数,Pool自动创建新连接;
  • maxcached : 最大的空闲连接数,如果空闲连接数大于这个数,Pool则关闭空闲连接;
  • maxconnections : 最大的连接数;
  • blocking : 当连接数达到最大的连接数时,在请求连接的时候,如果这个值是True,请求连接的程序会一直等待,直到当前连接数小于最大连接数,如果这个值是False,会报错;
def mysql_connection():
    maxconnections = 15  # 最大连接数
    pool = PooledDB(
        pymysql,
        maxconnections,
        host='localhost',
        user='root',
        port=3306,
        passwd='123456',
        db='test_DB',
        use_unicode=True)
    return pool

# 使用方式
pool = mysql_connection()
con = pool.connection()

3.数据预处理

文件格式:txt

共准备了四份虚拟数据以便测试,分别有10万, 50万, 100万, 500万行数据

MySQL表结构如下图:

Python3 多线程(连接池)操作MySQL插入数据

数据处理思路 :

  • 每一行一条记录,每个字段间用制表符 “\t” 间隔开,字段带有双引号;
  • 读取出来的数据类型是 Bytes ;
  • 最终得到嵌套列表的格式,用于多线程循环每个任务每次处理10万行数据;

格式 : [ [(A,B,C,D), (A,B,C,D),(A,B,C,D),…], [(A,B,C,D), (A,B,C,D),(A,B,C,D),…], [], … ]

import re
import time

st = time.time()
with open("10w.txt", "rb") as f:
    data = []
    for line in f:
        line = re.sub("\s", "", str(line, encoding="utf-8"))
        line = tuple(line[1:-1].split("\"\""))
        data.append(line)
    n = 100000  # 按每10万行数据为最小单位拆分成嵌套列表
    result = [data[i:i + n] for i in range(0, len(data), n)]
print("10万行数据,耗时:{}".format(round(time.time() - st, 3)))

# 10万行数据,耗时:0.374
# 50万行数据,耗时:1.848
# 100万行数据,耗时:3.725
# 500万行数据,耗时:18.493

4.线程任务

每调用一次插入函数就从连接池中取出一个链接操作,完成后关闭链接;
executemany 批量操作,减少 commit 次数,提升效率;

def mysql_insert(*args):
    con = pool.connection()
    cur = con.cursor()
    sql = "INSERT INTO test(sku,fnsku,asin,shopid) VALUES(%s, %s, %s, %s)"
    try:
        cur.executemany(sql, *args)
        con.commit()
    except Exception as e:
        con.rollback()  # 事务回滚
        print('SQL执行有误,原因:', e)
    finally:
        cur.close()
        con.close()

5.启动多线程

代码思路 :

设定最大队列数,该值必须要小于连接池的最大连接数,否则创建线程任务所需要的连接无法满足,会报错 : pymysql.err.OperationalError: (1040, ‘Too many connections')循环预处理好的列表数据,添加队列任务如果达到队列最大值 或者 当前任务是最后一个,就开始多线程队执行队列里的任务,直到队列为空;

def task():
    q = Queue(maxsize=10)  # 设定最大队列数和线程数
    # data : 预处理好的数据(嵌套列表)
    while data:
        content = data.pop()
        t = threading.Thread(target=mysql_insert, args=(content,))
        q.put(t)
        if (q.full() == True) or (len(data)) == 0:
            thread_list = []
            while q.empty() == False:
                t = q.get()
                thread_list.append(t)
                t.start()
            for t in thread_list:
                t.join()

6.完整示例

import pymysql
import threading
import re
import time
from queue import Queue
from DBUtils.PooledDB import PooledDB

class ThreadInsert(object):
    "多线程并发MySQL插入数据"
    def __init__(self):
        start_time = time.time()
        self.pool = self.mysql_connection()
        self.data = self.getData()
        self.mysql_delete()
        self.task()
        print("========= 数据插入,共耗时:{}'s =========".format(round(time.time() - start_time, 3)))
        
    def mysql_connection(self):
        maxconnections = 15  # 最大连接数
        pool = PooledDB(
            pymysql,
            maxconnections,
            host='localhost',
            user='root',
            port=3306,
            passwd='123456',
            db='test_DB',
            use_unicode=True)
        return pool

    def getData(self):
        st = time.time()
        with open("10w.txt", "rb") as f:
            data = []
            for line in f:
                line = re.sub("\s", "", str(line, encoding="utf-8"))
                line = tuple(line[1:-1].split("\"\""))
                data.append(line)
        n = 100000    # 按每10万行数据为最小单位拆分成嵌套列表
        result = [data[i:i + n] for i in range(0, len(data), n)]
        print("共获取{}组数据,每组{}个元素.==>> 耗时:{}'s".format(len(result), n, round(time.time() - st, 3)))
        return result

    def mysql_delete(self):
        st = time.time()
        con = self.pool.connection()
        cur = con.cursor()
        sql = "TRUNCATE TABLE test"
        cur.execute(sql)
        con.commit()
        cur.close()
        con.close()
        print("清空原数据.==>> 耗时:{}'s".format(round(time.time() - st, 3)))

    def mysql_insert(self, *args):
        con = self.pool.connection()
        cur = con.cursor()
        sql = "INSERT INTO test(sku, fnsku, asin, shopid) VALUES(%s, %s, %s, %s)"
        try:
            cur.executemany(sql, *args)
            con.commit()
        except Exception as e:
            con.rollback()  # 事务回滚
            print('SQL执行有误,原因:', e)
        finally:
            cur.close()
            con.close()

    def task(self):
        q = Queue(maxsize=10)  # 设定最大队列数和线程数
        st = time.time()
        while self.data:
            content = self.data.pop()
            t = threading.Thread(target=self.mysql_insert, args=(content,))
            q.put(t)
            if (q.full() == True) or (len(self.data)) == 0:
                thread_list = []
                while q.empty() == False:
                    t = q.get()
                    thread_list.append(t)
                    t.start()
                for t in thread_list:
                    t.join()
        print("数据插入完成.==>> 耗时:{}'s".format(round(time.time() - st, 3)))

if __name__ == '__main__':
    ThreadInsert()

插入数据对比

共获取1组数据,每组100000个元素.== >> 耗时:0.374's
清空原数据.== >> 耗时:0.031's
数据插入完成.== >> 耗时:2.499's
=============== 10w数据插入,共耗时:3.092's ===============
共获取5组数据,每组100000个元素.== >> 耗时:1.745's
清空原数据.== >> 耗时:0.0's
数据插入完成.== >> 耗时:16.129's
=============== 50w数据插入,共耗时:17.969's ===============
共获取10组数据,每组100000个元素.== >> 耗时:3.858's
清空原数据.== >> 耗时:0.028's
数据插入完成.== >> 耗时:41.269's
=============== 100w数据插入,共耗时:45.257's ===============
共获取50组数据,每组100000个元素.== >> 耗时:19.478's
清空原数据.== >> 耗时:0.016's
数据插入完成.== >> 耗时:317.346's
=============== 500w数据插入,共耗时:337.053's ===============

7.思考/总结

思考 :多线程+队列的方式基本能满足日常的工作需要,但是细想还是有不足;
例子中每次执行10个线程任务,在这10个任务执行完后才能重新添加队列任务,这样会造成队列空闲.如剩余1个任务未完成,当中空闲数 9,当中的资源时间都浪费了;
是否能一直保持队列饱满的状态,每完成一个任务就重新填充一个.

 到此这篇关于Python3 多线程(连接池)操作MySQL插入数据的文章就介绍到这了,更多相关Python3 多线程插入MySQL数据内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python的Flask框架中实现简单的登录功能的教程
Apr 20 Python
用Python进行TCP网络编程的教程
Apr 29 Python
python根据日期返回星期几的方法
Jul 06 Python
实例讲解Python编程中@property装饰器的用法
Jun 20 Python
尝试用最短的Python代码来实现服务器和代理服务器
Jun 23 Python
利用Python中的pandas库对cdn日志进行分析详解
Mar 07 Python
Python实现通过文件路径获取文件hash值的方法
Apr 29 Python
python3.6的venv模块使用详解
Aug 01 Python
Python判断一个list中是否包含另一个list全部元素的方法分析
Dec 24 Python
在PyCharm下使用 ipython 交互式编程的方法
Jan 17 Python
python控制nao机器人身体动作实例详解
Apr 29 Python
详解NumPy中的线性关系与数据修剪压缩
May 25 Python
jupyter notebook保存文件默认路径更改方法汇总(亲测可以)
Django rest framework如何自定义用户表
Jun 09 #Python
如何使用Python提取Chrome浏览器保存的密码
Jun 09 #Python
python缺失值的解决方法总结
Jun 09 #Python
Python提取PDF指定内容并生成新文件
Python激活Anaconda环境变量的详细步骤
Jun 08 #Python
Python序列化与反序列化相关知识总结
Jun 08 #Python
You might like
使用php实现下载生成某链接快捷方式的解决方法
2013/05/07 PHP
php解决约瑟夫环示例
2014/04/09 PHP
PHP编程基本语法快速入门手册
2016/01/07 PHP
js 分栏效果实现代码
2009/08/29 Javascript
jQuery EasyUI API 中文文档 - Parser 解析器
2011/09/29 Javascript
ajax异步刷新实现更新数据库
2012/12/03 Javascript
编写针对IE的JS代码两种编写方法
2013/01/30 Javascript
JavaScript获取FCK编辑器信息的具体方法
2013/07/12 Javascript
JS实现QQ图片一闪一闪的效果小例子
2013/07/31 Javascript
javascript ready和load事件的区别示例介绍
2013/08/30 Javascript
关于jquery中全局函数each使用介绍
2013/12/10 Javascript
javascript中基本类型和引用类型的区别分析
2015/05/12 Javascript
js检查是否关闭浏览器的方法
2016/08/02 Javascript
JavaScript实现简单的日历效果
2016/09/25 Javascript
JS只能输入正整数的简单实例
2016/10/07 Javascript
React创建组件的三种方式及其区别
2017/01/12 Javascript
Javascript中this关键字指向问题的测试与详解
2017/08/11 Javascript
Vue-Access-Control 前端用户权限控制解决方案
2017/12/01 Javascript
vue 组件使用中的一些细节点
2018/04/25 Javascript
vue 弹窗时 监听手机返回键关闭弹窗功能(页面不跳转)
2019/05/10 Javascript
vue下载二进制流图片操作
2020/10/26 Javascript
vue祖孙组件之间的数据传递案例
2020/12/07 Vue.js
[01:13:17]Secret vs NB 2018国际邀请赛小组赛BO2 第二场 8.19
2018/08/21 DOTA
[01:32]dota2拉比克至宝(222)
2018/12/20 DOTA
[54:17]DOTA2-DPC中国联赛定级赛 RNG vs iG BO3第二场 1月10日
2021/03/11 DOTA
python 执行文件时额外参数获取的实例
2018/12/18 Python
Python基于BeautifulSoup爬取京东商品信息
2020/06/01 Python
python 牛顿法实现逻辑回归(Logistic Regression)
2020/10/15 Python
Lookfantastic日本官网:英国知名护肤、化妆品和头发护理购物网站
2018/04/21 全球购物
Senreve官网:美国旧金山的奢侈手袋品牌
2019/03/21 全球购物
大龄毕业生求职别忘职业规划
2014/03/11 职场文书
酒店前台辞职书
2015/02/26 职场文书
小学班主任自我评价
2015/03/11 职场文书
2015年监理工作总结范文
2015/04/07 职场文书
股东协议书范本2016
2016/03/21 职场文书
2019学校运动会开幕词
2019/05/13 职场文书