python 性能提升的几种方法


Posted in Python onJuly 15, 2016

关于python 性能提升的一些方案。

一、函数调用优化(空间跨度,避免访问内存)

 程序的优化核心点在于尽量减少操作跨度,包括代码执行时间上的跨度以及内存中空间跨度。

1.大数据求和,使用sum

a = range(100000)
%timeit -n 10 sum(a)
10 loops, best of 3: 3.15 ms per loop
%%timeit
  ...: s = 0
  ...: for i in a:
  ...:  s += i
  ...:
100 loops, best of 3: 6.93 ms per loop

2.小数据求和,避免使用sum

%timeit -n 1000 s = a + b + c + d + e + f + g + h + i + j + k # 数据量较小时直接累加更快
1000 loops, best of 3: 571 ns per loop
%timeit -n 1000 s = sum([a,b,c,d,e,f,g,h,i,j,k]) # 小数据量调用 sum 函数,空间效率降低
1000 loops, best of 3: 669 ns per loop

结论:大数据求和sum效率高,小数据求和直接累加效率高。

二、for循环优化之取元素(使用栈或寄存器,避免访问内存)

for lst in [(1, 2, 3), (4, 5, 6)]: # lst 索引需要额外开销
  pass

 应尽量避免使用索引。

for a, b, c in [(1, 2, 3), (4, 5, 6)]: # better
  pass

相当于给每一个元素直接赋值。

def force():
 lst = range(4)
 for a1 in [1, 2]:
   for a2 in lst:
     for a3 in lst:
       for b1 in lst:
         for b2 in lst:
           for b3 in lst:
             for c1 in lst:
               for c2 in lst:
                 for c3 in lst:
                   for d1 in lst:
                     yield (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1)
                      
%%timeit -n 10
for t in force():
  sum([t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], t[8], t[9]])
10 loops, best of 3: 465 ms per loop
%%timeit -n 10
for a1, a2, a3, b1, b2, b3, c1, c2, c3, d1 in force():
  sum([a1, a2, a3, b1, b2, b3, c1, c2, c3, d1])
10 loops, best of 3: 360 ms per loop

三、生成器优化(查表代替运算)

def force(start, end): # 用于密码暴力破解程序
  for i in range(start, end):
    now = i
    sublst = []
    for j in range(10):
      sublst.append(i % 10) # 除法运算开销较大,比乘法大
      i //= 10
    sublst.reverse()
    yield(tuple(sublst), now)
def force(): # better
 lst = range(5)
 for a1 in [1]:
   for a2 in lst:
     for a3 in lst:
       for b1 in lst:
         for b2 in lst:
           for b3 in lst:
             for c1 in lst:
               for c2 in lst:
                 for c3 in lst:
                   for d1 in lst:
                     yield (a1, a2, a3, b1, b2, b3, c1, c2, c3, d1)
r0 = [1, 2] # 可读性与灵活性
r1 = range(10)
r2 = r3 = r4 = r5 = r6 = r7 = r8 = r9 = r1
force = ((a0, a1, a2, a3, a4, a5, a6, a7, a8, a9)
      for a0 in r0 for a1 in r1 for a2 in r2 for a3 in r3 for a4 in r4
      for a5 in r5 for a6 in r6 for a7 in r7 for a8 in r8 for a9 in r9)

 四、幂运算优化(pow(x,y,z)) 

def isprime(n):
  if n & 1 == 0:
    return False
  k, q = find_kq(n)
  a = randint(1, n - 1)
  if pow(a, q, n) == 1: # 比使用 a ** q % n 运算优化数倍
    return True
  for j in range(k):
    if pow(a, pow(2, j) * q, n) == n - 1: # a **((2 ** j) * q) % n
      return True
  return False

 结论:pow(x,y,z)优于x**y%z.

 五、除法运算优化

In [1]: from random import getrandbits
 
In [2]: x = getrandbits(4096)
 
In [3]: y = getrandbits(2048)
 
In [4]: %timeit -n 10000 q, r = divmod(x, y)
10000 loops, best of 3: 10.7 us per loop
 
In [5]: %timeit -n 10000 q, r = x//y, x % y
10000 loops, best of 3: 21.2 us per loop

 结论:divmod优于//和%。

 六、优化算法时间复杂度  

算法的时间复杂度对程序的执行效率影响最大,在python中可以选择合适的数据结构来优化时间复杂度,如list和set查找某一个元素的时间复杂度分别是O(n)和O(1)。不同场景有不同的优化方式,总的来说,一般有分治,分支定界、贪心动态规划等思想。

七、合理使用copy和deepcopy

对于dict和list等数据结构的对象,直接赋值使用的是引用的方式。而有些情况下需要复制整个对象,这时可以使用copy包里的copy和deepcopy,这两个函数的不同之处在于deepcopy是递归复制的。效率不同:

In [23]: import copy
In [24]: %timeit -n 10 copy.copy(a)
10 loops, best of 3: 606 ns per loop
In [25]: %timeit -n 10 copy.deepcopy(a)
10 loops, best of 3: 1.17 us per loop

 timeit后面的-n表示运行的次数,后两行对应的是两个timeit的输出,下同。由此可见后者慢一个数量级。

 关于copy的一个例子:

>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]

 发生的事情是这样的,[[]]是包含一个空列表的只有一个元素的列表,所以[[]] * 3的所有三个元素都是(指向)这个空列表。修改lists的任何元素都修改这个列表。修改效率高。

 八、使用dict或set查找元素

python 字典和集合都是使用hash表来实现(类似c++标准库unordered_map),查找元素的时间复杂度是O(1)。

In [1]: r = range(10**7)
In [2]: s = set(r) # 占用 588MB 内存
In [3]: d = dict((i, 1) for i in r) # 占用 716MB 内存
In [4]: %timeit -n 10000 (10**7) - 1 in r
10000 loops, best of 3: 291 ns per loop
In [5]: %timeit -n 10000 (10**7) - 1 in s
10000 loops, best of 3: 121 ns per loop
In [6]: %timeit -n 10000 (10**7) - 1 in d
10000 loops, best of 3: 111 ns per loop

结论:set 的内存占用量最小,dict运行时间最短。

九、合理使用(generator)和yield(节省内存)

In [1]: %timeit -n 10 a = (i for i in range(10**7)) # 生成器通常遍历更高效
10 loops, best of 3: 933 ns per loop
In [2]: %timeit -n 10 a = [i for i in range(10**7)]
10 loops, best of 3: 916 ms per loop
In [1]: %timeit -n 10 for x in (i for i in range(10**7)): pass
10 loops, best of 3: 749 ms per loop
In [2]: %timeit -n 10 for x in [i for i in range(10**7)]: pass
10 loops, best of 3: 1.05 s per loop

结论:尽量使用生成器去遍历。

以上就是对python 性能提升的一些方案,后续继续补充,需要的可以看下。

Python 相关文章推荐
python实现ip查询示例
Mar 26 Python
python中星号变量的几种特殊用法
Sep 07 Python
AI人工智能 Python实现人机对话
Nov 13 Python
Python+tkinter使用80行代码实现一个计算器实例
Jan 16 Python
python做量化投资系列之比特币初始配置
Jan 23 Python
Python实现上下班抢个顺风单脚本
Feb 07 Python
Python Opencv任意形状目标检测并绘制框图
Jul 23 Python
树莓派4B+opencv4+python 打开摄像头的实现方法
Oct 18 Python
Tensorflow实现在训练好的模型上进行测试
Jan 20 Python
在python中修改.properties文件的操作
Apr 08 Python
python Yaml、Json、Dict之间的转化
Oct 19 Python
浅谈Python数学建模之数据导入
Jun 23 Python
浅谈Python 对象内存占用
Jul 15 #Python
python发送邮件功能实现代码
Jul 15 #Python
Python中列表和元组的使用方法和区别详解
Dec 30 #Python
Python中的变量和作用域详解
Jul 13 #Python
在Python中通过threading模块定义和调用线程的方法
Jul 12 #Python
举例讲解Python编程中对线程锁的使用
Jul 12 #Python
使用Python编写一个最基础的代码解释器的要点解析
Jul 12 #Python
You might like
《星际争霸》各版本雷兽特点图文解析 雷兽不同形态一览
2020/03/02 星际争霸
学习discuz php 引入文件的方法DISCUZ_ROOT
2009/06/21 PHP
php的数组与字符串的转换函数整理汇总
2013/07/18 PHP
php递归创建目录的方法
2015/02/02 PHP
PHP单例模式定义与使用实例详解
2017/02/06 PHP
PHP Include文件实例讲解
2019/02/15 PHP
jQuery 获取浏览器所在的IP地址的小例子
2013/11/08 Javascript
Javascript实现禁止输入中文或英文的例子
2014/12/09 Javascript
jQuery+jsp下拉框联动获取本地数据的方法(附源码)
2015/12/03 Javascript
jQuery实现的超简单点赞效果实例分析
2015/12/31 Javascript
js+canvas简单绘制圆圈的方法
2016/01/28 Javascript
解决Angular.Js与Django标签冲突的方案
2016/12/20 Javascript
微信小程序 使用腾讯地图SDK详解及实现步骤
2017/02/28 Javascript
ionic环境配置及问题详解
2017/06/27 Javascript
vue路由对不同界面进行传参及跳转的总结
2019/04/20 Javascript
微信小程序日历弹窗选择器代码实例
2019/05/09 Javascript
js/jQuery实现全选效果
2019/06/17 jQuery
Layui实现带查询条件的分页
2019/07/27 Javascript
Vue 通过公共字段,拼接两个对象数组的实例
2019/11/07 Javascript
通过原生vue添加滚动加载更多功能
2019/11/21 Javascript
JS前端广告拦截实现原理解析
2020/02/17 Javascript
python多线程用法实例详解
2015/01/15 Python
Python的Socket编程过程中实现UDP端口复用的实例分享
2016/03/19 Python
Python中模块pymysql查询结果后如何获取字段列表
2017/06/05 Python
python中通过预先编译正则表达式提高效率
2017/09/25 Python
解决Djang2.0.1中的reverse导入失败的问题
2019/08/16 Python
Python实现自动装机功能案例分析
2020/10/22 Python
Lungolivigno Fashion官网:高级时装在线购物
2020/10/17 全球购物
大学毕业通用个人的求职信
2013/12/08 职场文书
党员群众路线承诺书
2014/05/20 职场文书
社区综治宣传月活动总结
2014/07/02 职场文书
社区好人好事材料
2014/12/26 职场文书
文案策划岗位职责
2015/02/11 职场文书
关于教师节的广播稿
2015/08/19 职场文书
2019年鼓励无偿献血倡议书
2019/09/17 职场文书
海贼王十大潜力果实,路飞仅排第十,第一可毁世界(震震果实)
2022/03/18 日漫