Opencv求取连通区域重心实例


Posted in Python onJune 04, 2020

我们有时候需要求取某一个物体重心,这里一般将图像二值化,得出该物体的轮廓,然后根据灰度重心法,计算出每一个物体的中心。

步骤如下:

1)合适的阈值二值化

2)求取轮廓

3)计算重心

otsu算法求取最佳阈值

otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别来划分,otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响。因此,使类间方差最大的分割意味着错分概率最小。

计算轮廓

opencv中函数findContours函数

findContours(二值化图像,轮廓,hierarchy,轮廓检索模式,轮廓近似办法,offset)

灰度重心法

利用灰度重心法计算中心,灰度重心法将区域内每一像素位置处的灰度值当做该点的“质量”,其求区域中心的公式为:

Opencv求取连通区域重心实例

其中,f(u,v)是坐标为(u,v)的像素点的灰度值, 是目标区域集合, 是区域中心坐标,灰度重心法提取的是区域的能量中心。

//otsu算法实现函数
int Otsu(Mat &image)
{
  int width = image.cols;
  int height = image.rows;
  int x = 0, y = 0;
  int pixelCount[256];
  float pixelPro[256];
  int i, j, pixelSum = width * height, threshold = 0;

  uchar* data = (uchar*)image.data;

  //初始化 
  for (i = 0; i < 256; i++)
  {
    pixelCount[i] = 0;
    pixelPro[i] = 0;
  }

  //统计灰度级中每个像素在整幅图像中的个数 
  for (i = y; i < height; i++)
  {
    for (j = x; j<width; j++)
    {
      pixelCount[data[i * image.step + j]]++;
    }
  }


  //计算每个像素在整幅图像中的比例 
  for (i = 0; i < 256; i++)
  {
    pixelPro[i] = (float)(pixelCount[i]) / (float)(pixelSum);
  }

  //经典ostu算法,得到前景和背景的分割 
  //遍历灰度级[0,255],计算出方差最大的灰度值,为最佳阈值 
  float w0, w1, u0tmp, u1tmp, u0, u1, u, deltaTmp, deltaMax = 0;
  for (i = 0; i < 256; i++)
  {
    w0 = w1 = u0tmp = u1tmp = u0 = u1 = u = deltaTmp = 0;

    for (j = 0; j < 256; j++)
    {
      if (j <= i) //背景部分 
      {
        //以i为阈值分类,第一类总的概率 
        w0 += pixelPro[j];
        u0tmp += j * pixelPro[j];
      }
      else    //前景部分 
      {
        //以i为阈值分类,第二类总的概率 
        w1 += pixelPro[j];
        u1tmp += j * pixelPro[j];
      }
    }

    u0 = u0tmp / w0;    //第一类的平均灰度 
    u1 = u1tmp / w1;    //第二类的平均灰度 
    u = u0tmp + u1tmp;   //整幅图像的平均灰度 
                //计算类间方差 
    deltaTmp = w0 * (u0 - u)*(u0 - u) + w1 * (u1 - u)*(u1 - u);
    //找出最大类间方差以及对应的阈值 
    if (deltaTmp > deltaMax)
    {
      deltaMax = deltaTmp;
      threshold = i;
    }
  }
  //返回最佳阈值; 
  return threshold;
}

int main()
{
  Mat White=imread("white.tif");//读取图像
  int threshold_white = otsu(White);//阈值计算,利用otsu
  cout << "最佳阈值:" << threshold_white << endl;
  Mat thresholded = Mat::zeros(White.size(), White.type());
  threshold(White, thresholded, threshold_white, 255, CV_THRESH_BINARY);//二值化
  vector<vector<Point>>contours;
  vector<Vec4i>hierarchy;
  findContours(thresholded, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);//查找轮廓

  int i = 0;
  int count = 0;
  Point pt[10];//假设有三个连通区域
  Moments moment;//矩
  vector<Point>Center;//创建一个向量保存重心坐标
  for (; i >= 0; i = hierarchy[i][0])//读取每一个轮廓求取重心
  {
    Mat temp(contours.at(i));
    Scalar color(0, 0, 255);
    moment = moments(temp, false);
    if (moment.m00 != 0)//除数不能为0
    {
      pt[i].x = cvRound(moment.m10 / moment.m00);//计算重心横坐标
      pt[i].y = cvRound(moment.m01 / moment.m00);//计算重心纵坐标

    }
      Point p = Point(pt[i].x, pt[i].y);//重心坐标
      circle(White, p, 1, color, 1, 8);//原图画出重心坐标
      count++;//重心点数或者是连通区域数
      Center.push_back(p);//将重心坐标保存到Center向量中
    }
  }
  cout << "重心点个数:" << Center.size() << endl;
  cout << "轮廓数量:" << contours.size() << endl;
  imwrite("Center.tif", White);
}

原图:

Opencv求取连通区域重心实例

二值化:

Opencv求取连通区域重心实例

重心点:

Opencv求取连通区域重心实例

补充知识:opencv 根据模板凸包求阈值化后的轮廓组合

图像处理中,要求特征与背景的对比度高,同时,合适的图像分割也是解决问题的关键。

博主以前的方法,默认为特征必然是最大的连通域,所以阈值化后,查找轮廓,直接提取面积最大的轮廓即可。

但可能会存在另一种情况,不论怎么阈值化和膨胀,想要的特征被分成好几块,也即断开了。此时,再加上一些不可预测的干扰和噪声,findcontours之后,会得到很多轮廓。

那么问题来了,我们需要的是哪个轮廓,或者是哪几个轮廓组合的区域?

本文的意义也在于此。

根据模板的凸包,求出图像中最相似的轮廓组合。

本方法,主要用到matchshapes函数,并基于这样一个前提:模板凸包的2/3部分,与模板凸包的相似度,大于模板凸包的1/2部分。

话不多说,上代码。

void getAlikeContours(std::vector<cv::Point> Inputlist, cv::Mat InputImage, std::vector<cv::Point> &Outputlist)
{
 Mat image;
 InputImage.copyTo(image);
 vector<vector<Point> > contours;
 findContours(image, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);//查找最外层轮廓
 for (int idx = contours.size() - 1; idx >= 0; idx--)
  {
	for (int i = contours[idx].size() - 1; i >= 0; i--)
	{
		if (contours[idx][i].x == 1 || contours[idx][i].y == 1 || contours[idx][i].x == image.cols - 2 || contours[idx][i].y == image.rows - 2)
		{
			swap(contours[idx][i], contours[idx][contours[idx].size() - 1]);
			contours[idx].pop_back();
			
		}
	}
	//可能会存在空的轮廓,把他们删除
	for (int idx = contours.size() - 1; idx >= 0; idx--)
	{
		if (contours[idx].size() == 0) contours.erase(contours.begin() + idx);
	}
 
	while (true)
	{
		if (contours.size() == 0) break;
		if (contours.size() == 1)
		{
			vector<Point> finalList;
			finalList.assign(contours[0].begin(), contours[0].end());
			convexHull(Mat(finalList), Outputlist, true);
			break;
		}
 
		int maxContourIdx = 0;
		int maxContourPtNum = 0;
		for (int index = contours.size() - 1; index >= 0; index--)
		{
			if (contours[index].size() > maxContourPtNum)
			{
				maxContourPtNum = contours[index].size();
				maxContourIdx = index;
			}
		}
		//第二大轮廓
		int secondContourIdx = 0;
		int secondContourPtNum = 0;
		for (int index = contours.size() - 1; index >= 0; index--)
		{
			if (index == maxContourIdx) continue;
			if (contours[index].size() > secondContourPtNum)
			{
				secondContourPtNum = contours[index].size();
				secondContourIdx = index;
			}
		}
		vector<Point> maxlist;
		vector<Point> maxAndseclist;
		vector<Point> maxlistHull;
		vector<Point> maxAndseclistHull;
		maxlist.insert(maxlist.end(), contours[maxContourIdx].begin(), contours[maxContourIdx].end());
		maxAndseclist.insert(maxAndseclist.end(), contours[maxContourIdx].begin(), contours[maxContourIdx].end());
		maxAndseclist.insert(maxAndseclist.end(), contours[secondContourIdx].begin(), contours[secondContourIdx].end());
		convexHull(Mat(maxlist), maxlistHull, true);
		convexHull(Mat(maxAndseclist), maxAndseclistHull, true);
		double maxcontourScore = matchShapes(Inputlist, maxlistHull, CV_CONTOURS_MATCH_I1, 0);
		double maxandseccontourScore = matchShapes(Inputlist, maxAndseclistHull, CV_CONTOURS_MATCH_I1, 0);
		if (maxcontourScore>maxandseccontourScore)
		{
			contours[maxContourIdx].insert(contours[maxContourIdx].end(), contours[secondContourIdx].begin(), contours[secondContourIdx].end());
		}
		contours.erase(contours.begin() + secondContourIdx);
	}
}

以上这篇Opencv求取连通区域重心实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python操作数据库之sqlite3打开数据库、删除、修改示例
Mar 13 Python
python万年历实现代码 含运行结果
May 20 Python
Django实现的自定义访问日志模块示例
Jun 23 Python
python 定时器,轮询定时器的实例
Feb 20 Python
在PyCharm的 Terminal(终端)切换Python版本的方法
Aug 02 Python
Python实现网页截图(PyQT5)过程解析
Aug 12 Python
tensorflow 只恢复部分模型参数的实例
Jan 06 Python
基于Tensorflow:CPU性能分析
Feb 10 Python
Python阶乘求和的代码详解
Feb 14 Python
Python 解决相对路径问题:&quot;No such file or directory&quot;
Jun 05 Python
Python request中文乱码问题解决方案
Sep 17 Python
Django数据库迁移常见使用方法
Nov 12 Python
Python中zip函数如何使用
Jun 04 #Python
Python中有几个关键字
Jun 04 #Python
Python如何转换字符串大小写
Jun 04 #Python
如何在Python对Excel进行读取
Jun 04 #Python
opencv 查找连通区域 最大面积实例
Jun 04 #Python
Python中的Cookie模块如何使用
Jun 04 #Python
Python爬虫获取页面所有URL链接过程详解
Jun 04 #Python
You might like
codeigniter教程之多文件上传使用示例
2014/02/11 PHP
yii2-GridView在开发中常用的功能及技巧总结
2017/01/07 PHP
PHP抽象类和接口用法实例详解
2019/07/20 PHP
出现“不能执行已释放的Script代码”错误的原因及解决办法
2007/08/29 Javascript
ASP.NET jQuery 实例10 动态修改hyperlink的URL值
2012/02/03 Javascript
JavaScript判断FileUpload控件上传文件类型
2015/09/28 Javascript
JS实现单击输入框弹出选择框效果完整实例
2015/12/14 Javascript
谈谈JavaScript的New关键字
2016/08/26 Javascript
bootstrap手风琴制作方法详解
2017/01/11 Javascript
详解微信小程序开发之城市选择器 城市切换
2017/01/17 Javascript
详解angularjs 关于ui-router分层使用
2017/06/12 Javascript
详解如何使用Node.js编写命令工具——以vue-cli为例
2017/06/29 Javascript
React应用中使用Bootstrap的方法
2017/08/15 Javascript
ionic App问题总结系列之ionic点击系统返回键退出App
2017/08/19 Javascript
浅谈Node.js CVE-2017-14849 漏洞分析(详细步骤)
2017/11/10 Javascript
JS字符串与二进制的相互转化实例代码详解
2019/06/28 Javascript
Javascript Dom元素获取和添加详解
2019/09/24 Javascript
[02:06]2018完美世界全国高校联赛秋季赛开始报名(附彩蛋)
2018/09/03 DOTA
python实现数通设备端口监控示例
2014/04/02 Python
Python使用xlrd模块操作Excel数据导入的方法
2015/05/26 Python
Python环境下搭建属于自己的pip源的教程
2016/05/05 Python
Python数据可视化正态分布简单分析及实现代码
2017/12/04 Python
详细解读tornado协程(coroutine)原理
2018/01/15 Python
对numpy中轴与维度的理解
2018/04/18 Python
python查看列的唯一值方法
2018/07/17 Python
Python中文件的写入读取以及附加文字方法
2019/01/23 Python
python安装后的目录在哪里
2020/06/21 Python
使paramiko库执行命令时在给定的时间强制退出功能的实现
2021/03/03 Python
化工专业个人的求职信范文
2013/11/28 职场文书
旅游业大学生创业计划书
2014/01/31 职场文书
初中高效课堂实施方案
2014/02/26 职场文书
补充协议书范本
2014/04/23 职场文书
2014年旅游局法制宣传日活动总结
2014/11/01 职场文书
普通员工辞职信范文
2015/05/12 职场文书
车辆挂靠协议书
2016/03/23 职场文书
MySQL注入基础练习
2021/05/30 MySQL