Python图像处理库PIL中图像格式转换的实现


Posted in Python onFebruary 26, 2020

在数字图像处理中,针对不同的图像格式有其特定的处理算法。所以,在做图像处理之前,我们需要考虑清楚自己要基于哪种格式的图像进行算法设计及其实现。本文基于这个需求,使用python中的图像处理库PIL来实现不同图像格式的转换。

对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为“L”。

通过之前的博客对Image模块的介绍,对于PNG、BMP和JPG彩色图像格式之间的互相转换都可以通过Image模块的open()和save()函数来完成。具体说就是,在打开这些图像时,PIL会将它们解码为三通道的“RGB”图像。用户可以基于这个“RGB”图像,对其进行处理。处理完毕,使用函数save(),可以将处理结果保存成PNG、BMP和JPG中任何格式。这样也就完成了几种格式之间的转换。同理,其他格式的彩色图像也可以通过这种方式完成转换。当然,对于不同格式的灰度图像,也可通过类似途径完成,只是PIL解码后是模式为“L”的图像。

这里,我想详细介绍一下Image模块的convert()函数,用于不同模式图像之间的转换。

Convert()函数有三种形式的定义,它们定义形式如下:

im.convert(mode)⇒image
im.convert(“P”, **options)⇒image
im.convert(mode, matrix)⇒image

使用不同的参数,将当前的图像转换为新的模式,并产生新的图像作为返回值。

本文我们采样的图片是lena的照片:

模式“1”:

>>> from PIL import Image
>>> lena = Image.open("lena.bmp")
>>> lena.mode
'RGB'
>>> lena.getpixel((0,0))
(226, 137, 125)
>>> lena_1 = lena.convert("1")
>>> lena_1.mode
'1'
>>> lena_1.size
(512, 512)
>>> lena_1.getpixel((0,0))
>>> lena_1.getpixel((10,10))
>>> lena_1.getpixel((10,120))
>>> lena_1.getpixel((130,120))
>>> lena_1.show()

结果:

Python图像处理库PIL中图像格式转换的实现

模式“L”:

模式“L”为灰色图像,它的每个像素用8个bit表示,0表示黑,255表示白,其他数字表示不同的灰度。在PIL中,从模式“RGB”转换为“L”模式是按照下面的公式转换的:

L = R * 299/1000 + G * 587/1000+ B * 114/1000

下面我们将lena图像转换为“L”图像。

>>> lena_L = lena.convert("L")
>>> lena_L.mode
'L'
>>> lena_L.size
(512, 512)
>>> lena_L.getpixel((0,0))
>>> lena.getpixel((0,0))
(226, 137, 125)
>>> lena_L.show()
>>> lena_L.save("lena_l.bmp")
>>>

对于第一个像素点,原始图像lena为(197, 111, 78),其转换为灰色值为:

197 *299/1000 + 111 * 587/1000 + 78 * 114/1000= 132.952,PIL中只取了整数部分,即为132。

转换后的图像lena_L如下:

Python图像处理库PIL中图像格式转换的实现

模式P:

模式“P”为8位彩色图像,它的每个像素用8个bit表示,其对应的彩色值是按照调色板查询出来的。

下面我们使用默认的调色板将lena图像转换为“P”图像。

example:

>>> lena_P = lena.convert("P")
>>> lena_P.mode
'P'
>>> lena_P.getpixel((0,0))

结果:

Python图像处理库PIL中图像格式转换的实现

模式“RGBA”:

模式“RGBA”为32位彩色图像,它的每个像素用32个bit表示,其中24bit表示红色、绿色和蓝色三个通道,另外8bit表示alpha通道,即透明通道。

下面我们将模式为“RGB”的lena图像转换为“RGBA”图像。

>>> lena_rgba = lena.convert("RGBA")
>>> 
>>> 
>>> 
>>> lena_rgba.mode
'RGBA'
>>> lena_rgba.getpixel((0,0))
(226, 137, 125, 255)
>>> lena_rgba.getpixel((0,1))
(226, 137, 125, 255)
>>> lena_rgba.show()

Python图像处理库PIL中图像格式转换的实现

模式“CMYK”:

模式“CMYK”为32位彩色图像,它的每个像素用32个bit表示。模式“CMYK”就是印刷四分色模式,它是彩色印刷时采用的一种套色模式,利用色料的三原色混色原理,加上黑色油墨,共计四种颜色混合叠加,形成所谓“全彩印刷”。

四种标准颜色是:C:Cyan =青色,又称为‘天蓝色'或是‘湛蓝'M:Magenta =品红色,又称为‘洋红色';Y:Yellow =黄色;K:Key Plate(blacK) =定位套版色(黑色)。

下面我们将模式为“RGB”的lena图像转换为“CMYK”图像。

>>> lena_cmyk = lena.convert("CMYK")
>>> lena_cmyk.mode
'CMYK'
>>> lena_cmyk.getpixel((0,0))
(29, 118, 130, 0)
>>> lena_cmyk.getpixel((0,1))
(29, 118, 130, 0)
>>> lena_cmyk.show()

从实例中可以得知PIL中“RGB”转换为“CMYK”的公式如下:

C = 255 - R
M = 255 - G
Y = 255 - B
K = 0

由于该转换公式比较简单,转换后的图像颜色有些失真。

转换后的图像lena_cmyk如下:

Python图像处理库PIL中图像格式转换的实现

模式“YCbCr”:

模式“YCbCr”为24位彩色图像,它的每个像素用24个bit表示。YCbCr其中Y是指亮度分量,Cb指蓝色色度分量,而Cr指红色色度分量。人的肉眼对视频的Y分量更敏感,因此在通过对色度分量进行子采样来减少色度分量后,肉眼将察觉不到的图像质量的变化。

模式“RGB”转换为“YCbCr”的公式如下:

Y= 0.257*R+0.504*G+0.098*B+16
Cb = -0.148*R-0.291*G+0.439*B+128
Cr = 0.439*R-0.368*G-0.071*B+128

下面我们将模式为“RGB”的lena图像转换为“YCbCr”图像。

>>> lena_ycbcr = lena.convert("YCbCr")
>>> lena_ycbcr.mode
'YCbCr'
>>> lena_ycbcr.getpixel((0,0))
(162, 107, 173)
>>> lena.getpixel((0,0))
(226, 137, 125)
>>>

按照公式,Y =0.257*197+0.564*111+0.098*78+16= 136.877

Cb=-0.148*197-0.291*111+0.439*78+128= 100.785
Cr = 0.439*197-0.368*111-0.071*78+128 = 168.097

由此可见,PIL中并非按照这个公式进行“RGB”到“YCbCr”的转换。

转换后的图像lena_ycbcr如下:

Python图像处理库PIL中图像格式转换的实现

模式“I”

模式“I”为32位整型灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在PIL中,从模式“RGB”转换为“I”模式是按照下面的公式转换的:

I = R * 299/1000 + G * 587/1000 + B * 114/1000

下面我们将模式为“RGB”的lena图像转换为“I”图像。

>>> lena_I = lena.convert("I")
>>> lena_I.mode
'I'
>>> lena_I.getpixel((0,0))
>>> lena_I.getpixel((0,1))
>>> lena_L = lena.convert("L")
>>> lena_L.getpixel((0,0))
>>> lena_L.getpixel((0,1))

从实验的结果看,模式“I”与模式“L”的结果是完全一样,只是模式“L”的像素是8bit,而模式“I”的像素是32bit。 

模式“F”

模式“F”为32位浮点灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在PIL中,从模式“RGB”转换为“F”模式是按照下面的公式转换的:

F = R * 299/1000+ G * 587/1000 + B * 114/1000

下面我们将模式为“RGB”的lena图像转换为“F”图像。

>>> lena_F = lena.convert("F")
>>> lena_F.mode
'F'
>>> lena_F.getpixel((0,0))
162.2429962158203
>>> lena_F.getpixel((0,1))
162.2429962158203
>>>

Python图像处理库PIL中图像格式转换的实现

模式“F”与模式“L”的转换公式是一样的,都是RGB转换为灰色值的公式,但模式“F”会保留小数部分,如实验中的数据.

以上就是Python图像处理库PIL中图像格式转换的实现的详细内容,更多关于PIL 图像格式转换的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python小技巧之批量抓取美女图片
Jun 06 Python
Python实现多并发访问网站功能示例
Jun 19 Python
Python简单读写Xls格式文档的方法示例
Aug 17 Python
对python同一个文件夹里面不同.py文件的交叉引用方法详解
Dec 15 Python
在Python中,不用while和for循环遍历列表的实例
Feb 20 Python
python实现udp传输图片功能
Mar 20 Python
解决json中ensure_ascii=False的问题
Apr 03 Python
在Ubuntu 20.04中安装Pycharm 2020.1的图文教程
Apr 30 Python
django 模型中的计算字段实例
May 19 Python
Python提取视频中图片的示例(按帧、按秒)
Oct 22 Python
matplotlib之pyplot模块实现添加子图subplot的使用
Apr 25 Python
基于flask实现五子棋小游戏
May 25 Python
Python基础之字典常见操作经典实例详解
Feb 26 #Python
python3使用Pillow、tesseract-ocr与pytesseract模块的图片识别的方法
Feb 26 #Python
python解释器pycharm安装及环境变量配置教程图文详解
Feb 26 #Python
Python如何使用turtle库绘制图形
Feb 26 #Python
Python解释器以及PyCharm的安装教程图文详解
Feb 26 #Python
Python定时器线程池原理详解
Feb 26 #Python
python ImageDraw类实现几何图形的绘制与文字的绘制
Feb 26 #Python
You might like
PHP编程开发怎么提高编程效率 提高PHP编程技术
2015/11/09 PHP
thinkPHP3.x常量整理(预定义常量/路径常量/系统常量)
2016/05/20 PHP
PHP二进制与字符串之间的相互转换教程
2016/10/14 PHP
tp5框架基于ajax实现异步删除图片的方法示例
2020/02/10 PHP
Javascript 篱式条件判断
2008/08/22 Javascript
跨浏览器开发经验总结(三)   警惕“IE依赖综合症”
2010/05/13 Javascript
javascript中数组的冒泡排序使用示例
2013/12/18 Javascript
jquery实现的网页自动播放声音
2014/04/30 Javascript
jquery实现的鼠标下拉滚动置顶效果
2014/07/24 Javascript
js 通过cookie实现刷新不变化树形菜单
2014/10/30 Javascript
angularjs中的单元测试实例
2014/12/06 Javascript
javascript属性访问表达式用法分析
2015/04/25 Javascript
基于jquery实现select选择框内容左右移动添加删除代码分享
2015/08/25 Javascript
7个去伪存真的JavaScript面试题
2016/01/07 Javascript
EasyUI 结合JS导出Excel文件的实现方法
2016/11/10 Javascript
node.js中EJS 模板快速入门教程
2017/05/08 Javascript
Vue编写多地区选择组件
2017/08/21 Javascript
node文字生成图片的示例代码
2017/10/26 Javascript
vue 实现Web端的定位功能 获取经纬度
2019/08/08 Javascript
vue指令v-html使用过滤器filters功能实例
2019/10/25 Javascript
Python 2.x如何设置命令执行的超时时间实例
2017/10/19 Python
python 实现语音聊天机器人的示例代码
2018/12/02 Python
Pytorch卷积层手动初始化权值的实例
2019/08/17 Python
vue常用指令代码实例总结
2020/03/16 Python
在服务器上安装python3.8.2环境的教程详解
2020/04/26 Python
美国著名的女性内衣零售商:Frederick’s of Hollywood
2018/02/24 全球购物
钳工实习自我鉴定
2013/09/19 职场文书
2014年百日安全生产活动总结
2014/05/04 职场文书
幼儿园大班见习报告
2014/10/31 职场文书
党的群众路线教育实践活动个人整改措施材料
2014/11/04 职场文书
优秀党务工作者先进事迹材料
2014/12/25 职场文书
总经理助理岗位职责
2015/01/31 职场文书
2016党员党课心得体会
2016/01/07 职场文书
Nginx+SpringBoot实现负载均衡的示例
2021/03/31 Servers
Javascript的promise,async和await的区别详解
2022/03/24 Javascript
JS前端使用Canvas快速实现手势解锁特效
2022/09/23 Javascript