python OpenCV学习笔记直方图反向投影的实现


Posted in Python onFebruary 07, 2018

本文介绍了python OpenCV学习笔记直方图反向投影的实现,分享给大家,具体如下:

官方文档 ? https://docs.opencv.org/3.4.0/dc/df6/tutorial_py_histogram_backprojection.html

它用于图像分割或寻找图像中感兴趣的对象。简单地说,它创建一个与我们的输入图像相同大小(但单通道)的图像,其中每个像素对应于属于我们对象的像素的概率。输出图像将使我们感兴趣的对象比其余部分更白。

该怎么做呢?我们创建一个图像的直方图,其中包含我们感兴趣的对象。为了得到更好的结果,对象应该尽可能地填充图像。而颜色直方图比灰度直方图更受青睐,因为对象的颜色比灰度强度更能定义对象。然后,我们在我们的测试图像上“反向投射”这个直方图,我们需要找到这个对象,换句话说,我们计算每个像素的概率,并显示它。在适当的阈值上产生的输出结果使我们得到了一个单独的结果。

Numpy中的算法

1、首先,我们需要计算我们需要找到的对象的颜色直方图(让它为'M')和我们将要搜索的图像(让它为'I')。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt

# roi是我们需要找到的对象或区域
roi = cv.imread('rose_red.png')
hsv = cv.cvtColor(roi, cv.COLOR_BGR2HSV)

# target是我们搜索的图像
target = cv.imread('rose.png')
hsvt = cv.cvtColor(target, cv.COLOR_BGR2HSV)

# 用calcHist来找直方图,也可以用np.histogram2d
M = cv.calcHist([hsv], [0,1], None, [180,256], [0,180,0,256])
I = cv.calcHist([hsvt], [0,1], None, [180,256], [0,180,0,256])

2、找到比率 R=M/I。然后背面投射R ,使用R作为调色板,并创建一个新的图像,每个像素作为其对应的目标概率。B(x,y) = R[h(x,y),s(x,y)],其中h是(x,y)坐标像素的色调,s是饱和度。之后,B(x,y)=min[B(x,y),1]

h, s, v = cv.split(hsvt)
B = R[h.ravel(), s.ravel()]
B = np.munimum(B, 1)
B = B.reshape(hsvt.shape[:2])

3、应用一个圆盘卷积,B = D * B,其中D是圆盘内核

disc = cv.getStructuringElement(cv.MORPH_ELLIPSE, (5,5))
cv.filter2D(B, -1, disc, B)
B = np.uint8(B)
cv.normalize(B, B, 0, 255, cv.NORM_MINMAX)

4、现在,最大强度的位置给了我们物体的位置。如果我们期望图像中有一个区域,给出一个合适的阈值会有一个很好的结果。

ret, thresh = cv.threshold(B, 50, 255, 0)

OpenCV中的投影

OpenCV提供一个内置的函数cv.calcbackproject()。它的参数几乎与cv.calcHist()函数相同。它的一个参数是直方图,它是这个对象的直方图,我们必须找到它。另外,在传递给backproject函数之前,对象的直方图应该是标准化的。它返回概率图像。然后,我们将图像与磁盘内核进行卷积,并应用阈值。下面是我的代码和输出:

import numpy as np
import cv2 as cv

roi = cv.imread('rose_red.png')
hsv = cv.cvtColor(roi, cv.COLOR_BGR2HSV)

target = cv.imread('rose.png')
hsvt = cv.cvtColor(target, cv.COLOR_BGR2HSV)

# 计算对象的直方图
roihist = cv.calcHist([hsv], [0,1], None, [180,256], [0,180,0,256])

# 标准化直方图,并应用投影
cv.normalize(roihist, roihist, 0, 255, cv.NORM_MINMAX)
dst = cv.calcBackProject([hsvt], [0,1], roihist, [0,180,0,256], 1)

# 与磁盘内核进行卷积
disc = cv.getStructuringElement(cv.MORPH_ELLIPSE, (5,5))
cv.filter2D(dst, -1, disc, dst)

# 阈值、二进制按位和操作
ret, thresh = cv.threshold(dst, 50, 255, 0)
thresh = cv.merge((thresh, thresh, thresh))
res = cv.bitwise_and(target, thresh)

res = np.vstack((target, thresh, res))
cv.imwrite('res.jpg', res)

下面是一个例子。使用蓝色矩形中的区域作为示例对象,提取想提取全部内容。

python OpenCV学习笔记直方图反向投影的实现

关于这两种技术的原理可以参考我上面贴的链接,下面是示例的代码:

0x01. 绘制直方图

import cv2.cv as cv
 
def drawGraph(ar,im, size): #Draw the histogram on the image
  minV, maxV, minloc, maxloc = cv.MinMaxLoc(ar) #Get the min and max value
  hpt = 0.9 * histsize
  for i in range(size):
    intensity = ar[i] * hpt / maxV #Calculate the intensity to make enter in the image
    cv.Line(im, (i,size), (i,int(size-intensity)),cv.Scalar(255,255,255)) #Draw the line
    i += 1
 
#---- Gray image
orig = cv.LoadImage("img/lena.jpg", cv.CV_8U)
 
histsize = 256 #Because we are working on grayscale pictures which values within 0-255
 
hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1)
 
cv.CalcHist([orig], hist) #Calculate histogram for the given grayscale picture
 
histImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values
drawGraph(hist.bins, histImg, histsize)
 
cv.ShowImage("Original Image", orig)
cv.ShowImage("Original Histogram", histImg)
#---------------------
 
#---- Equalized image
imEq = cv.CloneImage(orig)
cv.EqualizeHist(imEq, imEq) #Equlize the original image
 
histEq = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1)
cv.CalcHist([imEq], histEq) #Calculate histogram for the given grayscale picture
eqImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values
drawGraph(histEq.bins, eqImg, histsize)
 
cv.ShowImage("Image Equalized", imEq)
cv.ShowImage("Equalized HIstogram", eqImg)
#--------------------------------
 
cv.WaitKey(0)

0x02. 反向投影

import cv2.cv as cv
 
im = cv.LoadImage("img/lena.jpg", cv.CV_8U)
 
cv.SetImageROI(im, (1, 1,30,30))
 
histsize = 256 #Because we are working on grayscale pictures
hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1)
cv.CalcHist([im], hist)

cv.NormalizeHist(hist,1) # The factor rescale values by multiplying values by the factor
_,max_value,_,_ = cv.GetMinMaxHistValue(hist)
 
if max_value == 0:
  max_value = 1.0
cv.NormalizeHist(hist,256/max_value)
 
cv.ResetImageROI(im)
 
res = cv.CreateMat(im.height, im.width, cv.CV_8U)
cv.CalcBackProject([im], res, hist)
 
cv.Rectangle(im, (1,1), (30,30), (0,0,255), 2, cv.CV_FILLED)
cv.ShowImage("Original Image", im)
cv.ShowImage("BackProjected", res)
cv.WaitKey(0)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中的map、reduce和filter浅析
Apr 26 Python
如何在Python中编写并发程序
Feb 27 Python
Python简单实现子网掩码转换的方法
Apr 13 Python
Python实现找出数组中第2大数字的方法示例
Mar 26 Python
Python之文字转图片方法
May 10 Python
Window环境下Scrapy开发环境搭建
Nov 18 Python
详解pandas删除缺失数据(pd.dropna()方法)
Jun 25 Python
python命令行工具Click快速掌握
Jul 04 Python
Python-Seaborn热图绘制的实现方法
Jul 15 Python
python3实现在二叉树中找出和为某一值的所有路径(推荐)
Dec 26 Python
django使用多个数据库的方法实例
Mar 04 Python
教你使用TensorFlow2识别验证码
Jun 11 Python
Python实现上下班抢个顺风单脚本
Feb 07 #Python
Python SqlAlchemy动态添加数据表字段实例解析
Feb 07 #Python
Python实现抢购IPhone手机
Feb 07 #Python
浅谈python可视化包Bokeh
Feb 07 #Python
详解tensorflow训练自己的数据集实现CNN图像分类
Feb 07 #Python
全面分析Python的优点和缺点
Feb 07 #Python
Tensorflow环境搭建的方法步骤
Feb 07 #Python
You might like
如何开发一个虚拟域名系统
2006/10/09 PHP
php截取utf-8中文字符串乱码的解决方法
2010/03/29 PHP
由php的call_user_func传reference引发的思考
2010/07/23 PHP
php+mysql删除指定编号员工信息的方法
2015/01/14 PHP
使用GDB调试PHP代码,解决PHP代码死循环问题
2015/03/02 PHP
两款万能的php分页类
2015/11/12 PHP
Laravel ORM 数据model操作教程
2019/10/21 PHP
最新的10款jQuery内容滑块插件分享
2011/09/18 Javascript
javascript中this做事件参数相关问题解答
2013/03/17 Javascript
js图片延迟加载的实现方法及思路
2013/07/22 Javascript
Bootstrap每天必学之导航
2015/11/26 Javascript
你一定会收藏的Nodejs代码片段
2016/02/04 NodeJs
基于jquery实现动态竖向柱状条特效
2016/02/12 Javascript
利用jQuery中的ajax分页实现代码
2016/02/25 Javascript
Js与Jq获取浏览器和对象值的方法
2016/03/18 Javascript
JavaScript每天必学之基础知识
2016/09/17 Javascript
Vue.js绑定HTML class数组语法错误的原因分析
2016/10/19 Javascript
jquery 一键复制到剪切板的实例
2017/09/20 jQuery
vue.js实现带日期星期的数字时钟功能示例
2018/08/28 Javascript
vue-cli 目录结构详细讲解总结
2019/01/15 Javascript
JS立即执行函数功能与用法分析
2019/01/15 Javascript
jQuery实现简单弹幕效果
2019/11/28 jQuery
js数据类型转换与流程控制操作实例分析
2019/12/18 Javascript
24个ES6方法解决JS实际开发问题(小结)
2020/05/31 Javascript
利用Vue实现简易播放器的完整代码
2020/12/30 Vue.js
python实现简单温度转换的方法
2015/03/13 Python
使用Python的Scrapy框架编写web爬虫的简单示例
2015/04/17 Python
Python中关键字nonlocal和global的声明与解析
2017/03/12 Python
Pyqt5如何让QMessageBox按钮显示中文示例代码
2019/04/11 Python
python与C、C++混编的四种方式(小结)
2019/07/15 Python
对Django项目中的ORM映射与模糊查询的使用详解
2019/07/18 Python
解决Python pip 自动更新升级失败的问题
2020/02/21 Python
Python 使用office365邮箱的示例
2020/10/29 Python
清明节寄语2015
2015/03/23 职场文书
2019思想汇报范文
2019/05/21 职场文书
vue3获取当前路由地址
2022/02/18 Vue.js