详解tensorflow训练自己的数据集实现CNN图像分类


Posted in Python onFebruary 07, 2018

利用卷积神经网络训练图像数据分为以下几个步骤

1.读取图片文件
2.产生用于训练的批次
3.定义训练的模型(包括初始化参数,卷积、池化层等参数、网络)
4.训练

1 读取图片文件

def get_files(filename):
 class_train = []
 label_train = []
 for train_class in os.listdir(filename):
  for pic in os.listdir(filename+train_class):
   class_train.append(filename+train_class+'/'+pic)
   label_train.append(train_class)
 temp = np.array([class_train,label_train])
 temp = temp.transpose()
 #shuffle the samples
 np.random.shuffle(temp)
 #after transpose, images is in dimension 0 and label in dimension 1
 image_list = list(temp[:,0])
 label_list = list(temp[:,1])
 label_list = [int(i) for i in label_list]
 #print(label_list)
 return image_list,label_list

这里文件名作为标签,即类别(其数据类型要确定,后面要转为tensor类型数据)。

然后将image和label转为list格式数据,因为后边用到的的一些tensorflow函数接收的是list格式数据。

2 产生用于训练的批次

def get_batches(image,label,resize_w,resize_h,batch_size,capacity):
 #convert the list of images and labels to tensor
 image = tf.cast(image,tf.string)
 label = tf.cast(label,tf.int64)
 queue = tf.train.slice_input_producer([image,label])
 label = queue[1]
 image_c = tf.read_file(queue[0])
 image = tf.image.decode_jpeg(image_c,channels = 3)
 #resize
 image = tf.image.resize_image_with_crop_or_pad(image,resize_w,resize_h)
 #(x - mean) / adjusted_stddev
 image = tf.image.per_image_standardization(image)
 
 image_batch,label_batch = tf.train.batch([image,label],
            batch_size = batch_size,
            num_threads = 64,
            capacity = capacity)
 images_batch = tf.cast(image_batch,tf.float32)
 labels_batch = tf.reshape(label_batch,[batch_size])
 return images_batch,labels_batch

首先使用tf.cast转化为tensorflow数据格式,使用tf.train.slice_input_producer实现一个输入的队列。

label不需要处理,image存储的是路径,需要读取为图片,接下来的几步就是读取路径转为图片,用于训练。

CNN对图像大小是敏感的,第10行图片resize处理为大小一致,12行将其标准化,即减去所有图片的均值,方便训练。

接下来使用tf.train.batch函数产生训练的批次。

最后将产生的批次做数据类型的转换和shape的处理即可产生用于训练的批次。

3 定义训练的模型

(1)训练参数的定义及初始化

def init_weights(shape):
 return tf.Variable(tf.random_normal(shape,stddev = 0.01))
#init weights
weights = {
 "w1":init_weights([3,3,3,16]),
 "w2":init_weights([3,3,16,128]),
 "w3":init_weights([3,3,128,256]),
 "w4":init_weights([4096,4096]),
 "wo":init_weights([4096,2])
 }

#init biases
biases = {
 "b1":init_weights([16]),
 "b2":init_weights([128]),
 "b3":init_weights([256]),
 "b4":init_weights([4096]),
 "bo":init_weights([2])
 }

CNN的每层是y=wx+b的决策模型,卷积层产生特征向量,根据这些特征向量带入x进行计算,因此,需要定义卷积层的初始化参数,包括权重和偏置。其中第8行的参数形状后边再解释。

(2)定义不同层的操作

def conv2d(x,w,b):
 x = tf.nn.conv2d(x,w,strides = [1,1,1,1],padding = "SAME")
 x = tf.nn.bias_add(x,b)
 return tf.nn.relu(x)

def pooling(x):
 return tf.nn.max_pool(x,ksize = [1,2,2,1],strides = [1,2,2,1],padding = "SAME")

def norm(x,lsize = 4):
 return tf.nn.lrn(x,depth_radius = lsize,bias = 1,alpha = 0.001/9.0,beta = 0.75)

这里只定义了三种层,即卷积层、池化层和正则化层

(3)定义训练模型

def mmodel(images):
 l1 = conv2d(images,weights["w1"],biases["b1"])
 l2 = pooling(l1)
 l2 = norm(l2)
 l3 = conv2d(l2,weights["w2"],biases["b2"])
 l4 = pooling(l3)
 l4 = norm(l4)
 l5 = conv2d(l4,weights["w3"],biases["b3"])
 #same as the batch size
 l6 = pooling(l5)
 l6 = tf.reshape(l6,[-1,weights["w4"].get_shape().as_list()[0]])
 l7 = tf.nn.relu(tf.matmul(l6,weights["w4"])+biases["b4"])
 soft_max = tf.add(tf.matmul(l7,weights["wo"]),biases["bo"])
 return soft_max

模型比较简单,使用三层卷积,第11行使用全连接,需要对特征向量进行reshape,其中l6的形状为[-1,w4的第1维的参数],因此,将其按照“w4”reshape的时候,要使得-1位置的大小为batch_size,这样,最终再乘以“wo”时,最终的输出大小为[batch_size,class_num]

(4)定义评估量

def loss(logits,label_batches):
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,labels=label_batches)
  cost = tf.reduce_mean(cross_entropy)
  return cost

首先定义损失函数,这是用于训练最小化损失的必需量
 def get_accuracy(logits,labels):
  acc = tf.nn.in_top_k(logits,labels,1)
  acc = tf.cast(acc,tf.float32)
  acc = tf.reduce_mean(acc)
  return acc

评价分类准确率的量,训练时,需要loss值减小,准确率增加,这样的训练才是收敛的。

(5)定义训练方式

def training(loss,lr):
  train_op = tf.train.RMSPropOptimizer(lr,0.9).minimize(loss)
  return train_op

有很多种训练方式,可以自行去官网查看,但是不同的训练方式可能对应前面的参数定义不一样,需要另行处理,否则可能报错。

 4 训练

def run_training():
 data_dir = 'C:/Users/wk/Desktop/bky/dataSet/'
 image,label = inputData.get_files(data_dir)
 image_batches,label_batches = inputData.get_batches(image,label,32,32,16,20)
 p = model.mmodel(image_batches)
 cost = model.loss(p,label_batches)
 train_op = model.training(cost,0.001)
 acc = model.get_accuracy(p,label_batches)
 
 sess = tf.Session()
 init = tf.global_variables_initializer()
 sess.run(init)
 
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(sess = sess,coord = coord)
 
 try:
  for step in np.arange(1000):
   print(step)
   if coord.should_stop():
    break
   _,train_acc,train_loss = sess.run([train_op,acc,cost])
   print("loss:{} accuracy:{}".format(train_loss,train_acc))
 except tf.errors.OutOfRangeError:
  print("Done!!!")
 finally:
  coord.request_stop()
 coord.join(threads)
 sess.close()

神经网络训练的时候,我们需要将模型保存下来,方便后面继续训练或者用训练好的模型进行测试。因此,我们需要创建一个saver保存模型。

def run_training():
 data_dir = 'C:/Users/wk/Desktop/bky/dataSet/'
 log_dir = 'C:/Users/wk/Desktop/bky/log/'
 image,label = inputData.get_files(data_dir)
 image_batches,label_batches = inputData.get_batches(image,label,32,32,16,20)
 print(image_batches.shape)
 p = model.mmodel(image_batches,16)
 cost = model.loss(p,label_batches)
 train_op = model.training(cost,0.001)
 acc = model.get_accuracy(p,label_batches)
 
 sess = tf.Session()
 init = tf.global_variables_initializer()
 sess.run(init)
 saver = tf.train.Saver()
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(sess = sess,coord = coord)
 
 try:
  for step in np.arange(1000):
   print(step)
   if coord.should_stop():
    break
   _,train_acc,train_loss = sess.run([train_op,acc,cost])
   print("loss:{} accuracy:{}".format(train_loss,train_acc))
   if step % 100 == 0:
    check = os.path.join(log_dir,"model.ckpt")
    saver.save(sess,check,global_step = step)
 except tf.errors.OutOfRangeError:
  print("Done!!!")
 finally:
  coord.request_stop()
 coord.join(threads)
 sess.close()

训练好的模型信息会记录在checkpoint文件中,大致如下: 

model_checkpoint_path: "C:/Users/wk/Desktop/bky/log/model.ckpt-100"
all_model_checkpoint_paths: "C:/Users/wk/Desktop/bky/log/model.ckpt-0"
all_model_checkpoint_paths: "C:/Users/wk/Desktop/bky/log/model.ckpt-100"

其余还会生成一些文件,分别记录了模型参数等信息,后边测试的时候程序会读取checkpoint文件去加载这些真正的数据文件

详解tensorflow训练自己的数据集实现CNN图像分类

构建好神经网络进行训练完成后,如果用之前的代码直接进行测试,会报shape不符合的错误,大致是卷积层的输入与图像的shape不一致,这是因为上篇的代码,将weights和biases定义在了模型的外面,调用模型的时候,出现valueError的错误。

详解tensorflow训练自己的数据集实现CNN图像分类

因此,我们需要将参数定义在模型里面,加载训练好的模型参数时,训练好的参数才能够真正初始化模型。重写模型函数如下

def mmodel(images,batch_size):
 with tf.variable_scope('conv1') as scope:
  weights = tf.get_variable('weights', 
         shape = [3,3,3, 16],
         dtype = tf.float32, 
         initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
  biases = tf.get_variable('biases', 
         shape=[16],
         dtype=tf.float32,
         initializer=tf.constant_initializer(0.1))
  conv = tf.nn.conv2d(images, weights, strides=[1,1,1,1], padding='SAME')
  pre_activation = tf.nn.bias_add(conv, biases)
  conv1 = tf.nn.relu(pre_activation, name= scope.name)
 with tf.variable_scope('pooling1_lrn') as scope:
  pool1 = tf.nn.max_pool(conv1, ksize=[1,2,2,1],strides=[1,2,2,1],
        padding='SAME', name='pooling1')
  norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0,
       beta=0.75,name='norm1')
 with tf.variable_scope('conv2') as scope:
  weights = tf.get_variable('weights',
         shape=[3,3,16,128],
         dtype=tf.float32,
         initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
  biases = tf.get_variable('biases',
         shape=[128], 
         dtype=tf.float32,
         initializer=tf.constant_initializer(0.1))
  conv = tf.nn.conv2d(norm1, weights, strides=[1,1,1,1],padding='SAME')
  pre_activation = tf.nn.bias_add(conv, biases)
  conv2 = tf.nn.relu(pre_activation, name='conv2') 
 with tf.variable_scope('pooling2_lrn') as scope:
  norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,
       beta=0.75,name='norm2')
  pool2 = tf.nn.max_pool(norm2, ksize=[1,2,2,1], strides=[1,1,1,1],
        padding='SAME',name='pooling2')
 with tf.variable_scope('local3') as scope:
  reshape = tf.reshape(pool2, shape=[batch_size, -1])
  dim = reshape.get_shape()[1].value
  weights = tf.get_variable('weights',
         shape=[dim,4096],
         dtype=tf.float32,
         initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
  biases = tf.get_variable('biases',
         shape=[4096],
         dtype=tf.float32, 
         initializer=tf.constant_initializer(0.1))
  local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) 
 with tf.variable_scope('softmax_linear') as scope:
  weights = tf.get_variable('softmax_linear',
         shape=[4096, 2],
         dtype=tf.float32,
         initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
  biases = tf.get_variable('biases', 
         shape=[2],
         dtype=tf.float32, 
         initializer=tf.constant_initializer(0.1))
  softmax_linear = tf.add(tf.matmul(local3, weights), biases, name='softmax_linear')
 return softmax_linear

测试训练好的模型

首先获取一张测试图像

def get_one_image(img_dir):
  image = Image.open(img_dir)
  plt.imshow(image)
  image = image.resize([32, 32])
  image_arr = np.array(image)
  return image_arr

加载模型,计算测试结果

def test(test_file):
 log_dir = 'C:/Users/wk/Desktop/bky/log/'
 image_arr = get_one_image(test_file)
 
 with tf.Graph().as_default():
  image = tf.cast(image_arr, tf.float32)
  image = tf.image.per_image_standardization(image)
  image = tf.reshape(image, [1,32, 32, 3])
  print(image.shape)
  p = model.mmodel(image,1)
  logits = tf.nn.softmax(p)
  x = tf.placeholder(tf.float32,shape = [32,32,3])
  saver = tf.train.Saver()
  with tf.Session() as sess:
   ckpt = tf.train.get_checkpoint_state(log_dir)
   if ckpt and ckpt.model_checkpoint_path:
    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
    saver.restore(sess, ckpt.model_checkpoint_path)
    print('Loading success)
   else:
    print('No checkpoint')
   prediction = sess.run(logits, feed_dict={x: image_arr})
   max_index = np.argmax(prediction)
   print(max_index)

前面主要是将测试图片标准化为网络的输入图像,15-19是加载模型文件,然后将图像输入到模型里即可

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Python中处理XML的教程
Apr 29 Python
详解Python的Django框架中的中间件
Jul 24 Python
深入理解python try异常处理机制
Jun 01 Python
浅谈Python peewee 使用经验
Oct 20 Python
python使用pandas实现数据分割实例代码
Jan 25 Python
PyQt5 实现给窗口设置背景图片的方法
Jun 13 Python
Flask框架中request、请求钩子、上下文用法分析
Jul 23 Python
Python3之字节串bytes与字节数组bytearray的使用详解
Aug 27 Python
使用浏览器访问python写的服务器程序
Oct 10 Python
python使用pymongo与MongoDB基本交互操作示例
Apr 09 Python
python实现在内存中读写str和二进制数据代码
Apr 24 Python
python如何遍历指定路径下所有文件(按按照时间区间检索)
Sep 14 Python
全面分析Python的优点和缺点
Feb 07 #Python
Tensorflow环境搭建的方法步骤
Feb 07 #Python
Python pandas常用函数详解
Feb 07 #Python
详解python字节码
Feb 07 #Python
Tensorflow之构建自己的图片数据集TFrecords的方法
Feb 07 #Python
python深度优先搜索和广度优先搜索
Feb 07 #Python
Python Flask基础教程示例代码
Feb 07 #Python
You might like
PHP在特殊字符前加斜杠的实现代码
2011/07/17 PHP
大家都应该掌握的PHP关联数组使用技巧
2015/12/25 PHP
PHP实现的oracle分页函数实例
2016/01/25 PHP
thinkphp表单上传文件并将文件路径保存到数据库中
2016/07/28 PHP
实例介绍PHP删除数组中的重复元素
2019/03/03 PHP
在Laravel5中正确设置文件权限的方法
2019/05/22 PHP
javascript编程起步(第二课)
2007/01/10 Javascript
JS判断网页广告是否被浏览器拦截过滤的代码
2015/04/05 Javascript
Jquery网页内滑动缓冲导航的实现代码
2015/04/05 Javascript
JavaScript实现点击自动选择TextArea文本的方法
2015/07/02 Javascript
老司机带你解读jQuery插件开发流程
2016/05/16 Javascript
jQuery+Ajax实现限制查询间隔的方法
2016/06/07 Javascript
JavaScript中点击事件的写法
2016/06/28 Javascript
基于jQuery实现歌词滚动版音乐播放器的代码
2016/09/17 Javascript
js中数组的常用方法小结
2016/12/30 Javascript
JavaScript生成简单等差数列
2017/11/28 Javascript
详解vue-cli 本地开发mock数据使用方法
2018/05/29 Javascript
原生实现一个react-redux的代码示例
2018/06/08 Javascript
JS实现选项卡效果的代码实例
2019/05/20 Javascript
JavaScript进阶(四)原型与原型链用法实例分析
2020/05/09 Javascript
[02:13] 完美世界DOTA2联赛PWL DAY5集锦
2020/11/03 DOTA
[08:56]DOTA2-DPC中国联赛2月23日Recap集锦
2021/03/11 DOTA
python 布尔操作实现代码
2013/03/23 Python
python递归查询菜单并转换成json实例
2017/03/27 Python
python实现淘宝秒杀脚本
2020/06/23 Python
pandas将多个dataframe以多个sheet的形式保存到一个excel文件中
2019/10/10 Python
Python enumerate函数遍历数据对象组合过程解析
2019/12/11 Python
Python2与Python3的区别详解
2020/02/09 Python
完美解决python针对hdfs上传和下载的问题
2020/06/05 Python
python主要用于哪些方向
2020/07/05 Python
基于python判断字符串括号是否闭合{}[]()
2020/09/21 Python
高中考试作弊检讨书
2014/01/14 职场文书
安全生产责任书范本
2014/04/15 职场文书
学校安全生产月活动总结
2014/07/05 职场文书
个人优缺点总结
2015/02/28 职场文书
怎么禁用Windows 11快照布局? win11不使用快照布局的技巧
2021/11/21 数码科技