用Python进行一些简单的自然语言处理的教程


Posted in Python onMarch 31, 2015

本月的每月挑战会主题是NLP,我们会在本文帮你开启一种可能:使用pandas和python的自然语言工具包分析你Gmail邮箱中的内容。

NLP-风格的项目充满无限可能:

  •     情感分析是对诸如在线评论、社交媒体等情感内容的测度。举例来说,关于某个话题的tweets趋向于正面还是负面的意见?一个新闻网站涵盖的主题,是使用了更正面/负面的词语,还是经常与某些情绪相关的词语?这个“正面”的Yelp点评不是很讽刺么?(祝最后去的那位好运!)
  •     分析语言在文学中的使用,进而衡量词汇或者写作风格随时间/地区/作者的变化趋势.
  •     通过识别所使用的语言的关键特征,标记是否为垃圾内容。
  •     基于评论所覆盖的主题,使用主题抽取进行相似类别的划分。
  •     通过NLTK's的语料库,应用Elastisearch和WordNet的组合来衡量Twitter流API上的词语相似度,进而创建一个更好的实时Twitter搜索。
  •     加入NaNoGenMo项目,用代码生成自己的小说,你可以从这里大量的创意和资源入手。

将Gmail收件箱加载到pandas

让我们从项目实例开始!首先我们需要一些数据。准备你的Gmail的数据存档(包括你最近的垃圾邮件和垃圾文件夹)。

https://www.google.com/settings/takeout

现在去散步吧,对于5.1G大小的信箱,我2.8G的存档需要发送一个多小时。

当你得到数据并为工程配置好本地环境之后好,使用下面的脚本将数据读入到pandas(强烈建议使用IPython进行数据分析)
 

from mailbox import mbox
import pandas as pd
 
def store_content(message, body=None):
 if not body:
  body = message.get_payload(decode=True)
 if len(message):
  contents = {
   "subject": message['subject'] or "",
   "body": body,
   "from": message['from'],
   "to": message['to'],
   "date": message['date'],
   "labels": message['X-Gmail-Labels'],
   "epilogue": message.epilogue,
  }
  return df.append(contents, ignore_index=True)
 
# Create an empty DataFrame with the relevant columns
df = pd.DataFrame(
 columns=("subject", "body", "from", "to", "date", "labels", "epilogue"))
 
# Import your downloaded mbox file
box = mbox('All mail Including Spam and Trash.mbox')
 
fails = []
for message in box:
 try:
  if message.get_content_type() == 'text/plain':
   df = store_content(message)
  elif message.is_multipart():
   # Grab any plaintext from multipart messages
   for part in message.get_payload():
    if part.get_content_type() == 'text/plain':
     df = store_content(message, part.get_payload(decode=True))
     break
 except:
  fails.append(message)

上面使用Python的mailbox模块读取并解析mbox格式的邮件。当然还可以使用更加优雅的方法来完成(比如,邮件中包含大量冗余、重复的数据,像回复中嵌入的“>>>”符号)。另外一个问题是无法处理一些特殊的字符,简单起见,我们进行丢弃处理;确认你在这一步没有忽略信箱中重要的部分。

需要注意的是,除了主题行,我们实际上并不打算利用其它内容。但是你可以对时间戳、邮件正文进行各种各样有趣的分析,通过标签进行分类等等。鉴于这只是帮助你入门的文章(碰巧会显示来自我自己信箱中的结果),我不想去考虑太多细节。

查找常用词语

现在我们已经得到了一些数据,那么来找出所有标题行中最常用的10个词语:
 

# Top 10 most common subject words
from collections import Counter
 
subject_word_bag = df.subject.apply(lambda t: t.lower() + " ").sum()
 
Counter(subject_word_bag.split()).most_common()[:10]
 
[('re:', 8508), ('-', 1188), ('the', 819), ('fwd:', 666), ('to', 572), ('new', 530), ('your', 528), ('for', 498), ('a', 463), ('course', 452)]

嗯,那些太常见了,下面尝试对常用词语做些限制:
 

from nltk.corpus import stopwords
stops = [unicode(word) for word in stopwords.words('english')] + ['re:', 'fwd:', '-']
subject_words = [word for word in subject_word_bag.split() if word.lower() not in stops]
Counter(subject_words).most_common()[:10]
 
[('new', 530), ('course', 452), ('trackmaven', 334), ('question', 334), ('post', 286), ('content', 245), ('payment', 244), ('blog', 241), ('forum', 236), ('update', 220)]

除了人工移除几个最没价值的词语,我们也使用了NLTK的停用词语料库,使用前需要进行傻瓜式安装。现在可以看到我收件箱中的一些典型词语,但通常来讲在英文文本中并不一定同样是典型的。

二元词组和搭配词

NLTK可以进行另外一个有趣的测量是搭配原则。首先,我们来看下常用的“二元词组”,即经常一起成对出现的两个单词的集合:
 

from nltk import collocations
bigram_measures = collocations.BigramAssocMeasures()
bigram_finder = collocations.BigramCollocationFinder.from_words(subject_words)
 
# Filter to top 20 results; otherwise this will take a LONG time to analyze
bigram_finder.apply_freq_filter(20)
for bigram in bigram_finder.score_ngrams(bigram_measures.raw_freq)[:10]:
 print bigram
 
(('forum', 'content'), 0.005839453284373725)
(('new', 'forum'), 0.005839453284373725)
(('blog', 'post'), 0.00538045695634435)
(('domain', 'names'), 0.004870461036311709)
(('alpha', 'release'), 0.0028304773561811506)
(('default', 'widget.'), 0.0026519787841697267)
(('purechat:', 'question'), 0.0026519787841697267)
(('using', 'default'), 0.0026519787841697267)
(('release', 'third'), 0.002575479396164831)
(('trackmaven', 'application'), 0.002524479804161567)

我们可以对三元词组(或n元词组)重复相同的步骤来查找更长的短语。这个例子中,“new forum content”是出现次数最多的三元词组,但是在上面例子的列表中,它却被分割成两部分并位居二元词组列表的前列。

另外一个稍微不同类型的搭配词的度量是基于点间互信息(pointwise mutual information)的。本质上,它所度量的是给定一个我们在指定文本中看到的单词,相对于他们通常在全部文档中单独出现的频率,另外一个单词出现的可能性。举例来说,通常,如果我的邮件主题使用单词“blog”与/或“post”很多,那么二元组“blog post”并不是一个有趣的信号,因为一个单词仍然可能不和另一个单词同时出现。根据这条准则,我们得到一个不同的二元组的集合。
 

for bigram in bigram_finder.nbest(bigram_measures.pmi, 5):
 print bigram
 
('4:30pm', '5pm')
('motley', 'fool')
('60,', '900,')
('population', 'cap')
('simple', 'goods')

因此,我没有收到很多提到单词“motley”或者“fool”的邮件主题,但是当我看到其中任意一个,那么“Motley Fool”可能是相关联的。

情感分析

最后,让我们尝试一些情感分析。为了快速入门,我们可以使用以NLTK为基础的TextBlob库,它提供了对于大量的常用NLP任务的简单访问。我们可以使用它内建的情感分析(基于模式)来计算主题的“极性(polarity)”。从,表示高度负面情绪的-1到表示正面情绪的1,其中0为中性(缺乏一个明确的信号)

接下来:分析一段时间内的你的收件箱;看看是否能够通过邮件分类,确定正文的发送者/标签/垃圾这些基本属性。使用潜在语义索引去揭示所涵盖的最常用的常规主题。将你的发件文件夹输入到马尔科夫模型(Markov model)中,结合词性标注生成看起来连贯的自动回复

请让我们知道你是否使用NLP尝试了有趣的项目分支,包含一份开源库将作为加分点。你可以在challenge.hackpad.com看下前面的展示,以找到更多的灵感!

Python 相关文章推荐
python获得图片base64编码示例
Jan 16 Python
Python中的Classes和Metaclasses详解
Apr 02 Python
Python 实现网页自动截图的示例讲解
May 17 Python
Python常见排序操作示例【字典、列表、指定元素等】
Aug 15 Python
详解python Todo清单实战
Nov 01 Python
python的常用模块之collections模块详解
Dec 06 Python
浅谈python中真正关闭socket的方法
Dec 18 Python
对Python中实现两个数的值交换的集中方法详解
Jan 11 Python
python实现对变位词的判断方法
Apr 05 Python
在Ubuntu 20.04中安装Pycharm 2020.1的图文教程
Apr 30 Python
Python爬虫HTPP请求方法有哪些
Jun 03 Python
Python批量解压&压缩文件夹的示例代码
Apr 04 Python
用Python制作在地图上模拟瘟疫扩散的Gif图
Mar 31 #Python
以一段代码为实例快速入门Python2.7
Mar 31 #Python
11个并不被常用但对开发非常有帮助的Python库
Mar 31 #Python
Python的Flask框架中@app.route的用法教程
Mar 31 #Python
使用Python的Flask框架实现视频的流媒体传输
Mar 31 #Python
在Python3中初学者应会的一些基本的提升效率的小技巧
Mar 31 #Python
使用IronPython把Python脚本集成到.NET程序中的教程
Mar 31 #Python
You might like
php中字符查找函数strpos、strrchr与strpbrk用法
2014/11/18 PHP
php使用GD实现颜色渐变实例
2015/06/02 PHP
js中将多个语句写成一个语句的两种方法小结
2007/12/08 Javascript
js类中的公有变量和私有变量
2008/07/24 Javascript
为JavaScript添加重载函数的辅助方法
2010/07/04 Javascript
Jquery工作常用实例 使用AJAX使网页进行异步更新
2011/07/26 Javascript
javascript 事件处理、鼠标拖动效果实现方法详解
2012/05/11 Javascript
JavaScript中使用stopPropagation函数停止事件传播例子
2014/08/27 Javascript
javascript关于open.window子页面执行完成后刷新父页面的问题分析
2015/04/27 Javascript
JavaScript中的parse()方法使用简介
2015/06/12 Javascript
JS类的定义与使用方法深入探索
2016/11/26 Javascript
微信小程序tabbar不显示解决办法
2017/06/08 Javascript
jQuery实现拼图小游戏(实例讲解)
2017/07/24 jQuery
js 提取某()特殊字符串长度的实例
2017/12/06 Javascript
关于vue中watch检测到不到对象属性的变化的解决方法
2018/02/08 Javascript
JS实现匀速与减速缓慢运动的动画效果封装示例
2018/08/27 Javascript
[00:48]DOTA2国际邀请赛公开赛报名开始 扫码开启逐梦之旅
2018/06/06 DOTA
python定时检查启动某个exe程序适合检测exe是否挂了
2013/01/21 Python
Python获取远程文件大小的函数代码分享
2014/05/13 Python
bat和python批量重命名文件的实现代码
2016/05/19 Python
Python Pandas找到缺失值的位置方法
2018/04/12 Python
django 在原有表格添加或删除字段的实例
2018/05/27 Python
python实现图片筛选程序
2018/10/24 Python
Python中的上下文管理器相关知识详解
2019/09/19 Python
Python MOCK SERVER moco模拟接口测试过程解析
2020/04/13 Python
Python 解析库json及jsonpath pickle的实现
2020/08/17 Python
Python判断字符串是否为合法标示符操作
2020/09/03 Python
非常震撼的纯CSS3人物行走动画
2016/02/24 HTML / CSS
详解基于 Canvas 手撸一个六边形能力图
2019/09/02 HTML / CSS
Html5 语法与规则简要概述
2014/07/29 HTML / CSS
希尔顿酒店中国网站:Hilton中国
2017/03/11 全球购物
 Alo Yoga官网:购买瑜伽服装
2018/06/17 全球购物
Tommy Hilfiger澳洲官网:美国高端休闲领导品牌
2020/12/16 全球购物
TCP/IP模型的分界线
2012/12/01 面试题
农救科工作职责
2013/11/27 职场文书
小学生安全教育心得体会
2016/01/15 职场文书