用Python制作在地图上模拟瘟疫扩散的Gif图


Posted in Python onMarch 31, 2015

受杰森的《Almost Looks Like Work》启发,我来展示一些病毒传播模型。需要注意的是这个模型并不反映现实情况,因此不要误以为是西非可怕的传染病。相反,它更应该被看做是某种虚构的僵尸爆发现象。那么,让我们进入主题。

用Python制作在地图上模拟瘟疫扩散的Gif图

这就是SIR模型,其中字母S、I和R反映的是在僵尸疫情中,个体可能处于的不同状态。

  •     S 代表易感群体,即健康个体中潜在的可能转变的数量。
  •     I 代表染病群体,即僵尸数量。
  •     R 代表移除量,即因死亡而退出游戏的僵尸数量,或者感染后又转回人类的数量。但对与僵尸不存在治愈者,所以我们就不要自我愚弄了(如果要把SIR模型应用到流感传染中,还是有治愈者的)。
  • 至于β(beta)和γ(gamma):
  •     β(beta)表示疾病的传染性程度,只要被咬就会感染。
  •     γ(gamma)表示从僵尸走向死亡的速率,取决于僵尸猎人的平均工作速率,当然,这不是一个完美的模型,请对我保持耐心。
  • S′=?βIS告诉我们健康者变成僵尸的速率,S′是对时间的导数。
  • I′=βIS?γI告诉我们感染者是如何增加的,以及行尸进入移除态速率(双关语)。
  • R′=γI只是加上(gamma I),这一项在前面的等式中是负的。

上面的模型没有考虑S/I/R的空间分布,下面来修正一下!

一种方法是把瑞典和北欧国家分割成网格,每个单元可以感染邻近单元,描述如下:

其中对于单元,和是它周围的四个单元。(不要因为对角单元而脑疲劳,我们需要我们的大脑不被吃掉)。

初始化一些东东。
 

import numpy as np
import math
import matplotlib.pyplot as plt  
%matplotlib inline
from matplotlib import rcParams
import matplotlib.image as mpimg
rcParams['font.family'] = 'serif'
rcParams['font.size'] = 16
rcParams['figure.figsize'] = 12, 8
from PIL import Image

适当的beta和gamma值就能够摧毁大半江山
 

beta = 0.010
gamma = 1

还记得导数的定义么?当导数已知,假设Δt很小的情况下,经过重新整理,它可以用来近似预测函数的下一个取值,我们已经声明过u′(t)。

用Python制作在地图上模拟瘟疫扩散的Gif图

初始化一些东东。
 

import numpy as np
import math
import matplotlib.pyplot as plt  
%matplotlib inline
from matplotlib import rcParams
import matplotlib.image as mpimg
rcParams['font.family'] = 'serif'
rcParams['font.size'] = 16
rcParams['figure.figsize'] = 12, 8
from PIL import Image

适当的beta和gamma值就能够摧毁大半江山
 

beta = 0.010
gamma = 1

还记得导数的定义么?当导数已知,假设Δt很小的情况下,经过重新整理,它可以用来近似预测函数的下一个取值,我们已经声明过u′(t)。

用Python制作在地图上模拟瘟疫扩散的Gif图

这种方法叫做欧拉法,代码如下:
 

def euler_step(u, f, dt):
  return u + dt * f(u)

我们需要函数f(u)。友好的numpy提供了简洁的数组操作。我可能会在另一篇文章中回顾它,因为它们太强大了,需要更多的解释,但现在这样就能达到效果:

def f(u):
  S = u[0]
  I = u[1]
  R = u[2]
 
  new = np.array([-beta*(S[1:-1, 1:-1]*I[1:-1, 1:-1] +
              S[0:-2, 1:-1]*I[0:-2, 1:-1] +
              S[2:, 1:-1]*I[2:, 1:-1] +
              S[1:-1, 0:-2]*I[1:-1, 0:-2] +
              S[1:-1, 2:]*I[1:-1, 2:]),
           beta*(S[1:-1, 1:-1]*I[1:-1, 1:-1] +
              S[0:-2, 1:-1]*I[0:-2, 1:-1] +
              S[2:, 1:-1]*I[2:, 1:-1] +
              S[1:-1, 0:-2]*I[1:-1, 0:-2] +
              S[1:-1, 2:]*I[1:-1, 2:]) - gamma*I[1:-1, 1:-1],
           gamma*I[1:-1, 1:-1]
          ])
 
  padding = np.zeros_like(u)
  padding[:,1:-1,1:-1] = new
  padding[0][padding[0] < 0] = 0
  padding[0][padding[0] > 255] = 255
  padding[1][padding[1] < 0] = 0
  padding[1][padding[1] > 255] = 255
  padding[2][padding[2] < 0] = 0
  padding[2][padding[2] > 255] = 255
 
  return padding

导入北欧国家的人口密度图并进行下采样,以便较快地得到结果
 

from PIL import Image
img = Image.open('popdens2.png')
img = img.resize((img.size[0]/2,img.size[1]/2))
img = 255 - np.asarray(img)
imgplot = plt.imshow(img)
imgplot.set_interpolation('nearest')

用Python制作在地图上模拟瘟疫扩散的Gif图

北欧国家的人口密度图(未包含丹麦)

S矩阵,也就是易感个体,应该近似于人口密度。感染者初始值是0,我们把斯德哥尔摩作为第一感染源。
 

S_0 = img[:,:,1]
I_0 = np.zeros_like(S_0)
I_0[309,170] = 1 # patient zero

因为还没人死亡,所以把矩阵也置为0.
 

R_0 = np.zeros_like(S_0)

接着初始化模拟时长等。
 

T = 900             # final time
dt = 1             # time increment
N = int(T/dt) + 1        # number of time-steps
t = np.linspace(0.0, T, N)   # time discretization
 
# initialize the array containing the solution for each time-step
u = np.empty((N, 3, S_0.shape[0], S_0.shape[1]))
u[0][0] = S_0
u[0][1] = I_0
u[0][2] = R_0

我们需要自定义一个颜色表,这样才能将感染矩阵显示在地图上。
 

import matplotlib.cm as cm
theCM = cm.get_cmap("Reds")
theCM._init()
alphas = np.abs(np.linspace(0, 1, theCM.N))
theCM._lut[:-3,-1] = alphas

下面坐下来欣赏吧…

for n in range(N-1):
  u[n+1] = euler_step(u[n], f, dt)

让我们再做一下图像渲染,把它做成gif,每个人都喜欢gifs!
 

from images2gif import writeGif
 
keyFrames = []
frames = 60.0
 
for i in range(0, N-1, int(N/frames)):
  imgplot = plt.imshow(img, vmin=0, vmax=255)
  imgplot.set_interpolation("nearest")
  imgplot = plt.imshow(u[i][1], vmin=0, cmap=theCM)
  imgplot.set_interpolation("nearest")
  filename = "outbreak" + str(i) + ".png"
  plt.savefig(filename)
  keyFrames.append(filename)
 
images = [Image.open(fn) for fn in keyFrames]
gifFilename = "outbreak.gif"
writeGif(gifFilename, images, duration=0.3)
plt.clf()
Python 相关文章推荐
Python写的一个简单DNS服务器实例
Jun 04 Python
python队列queue模块详解
Apr 27 Python
Python元组知识点总结
Feb 18 Python
Django Sitemap 站点地图的实现方法
Apr 29 Python
Python将string转换到float的实例方法
Jul 29 Python
通过python扫描二维码/条形码并打印数据
Nov 14 Python
浅谈python已知元素,获取元素索引(numpy,pandas)
Nov 26 Python
Django多层嵌套ManyToMany字段ORM操作详解
May 19 Python
Python如何在bool函数中取值
Sep 21 Python
python实现逻辑回归的示例
Oct 09 Python
Python安装第三方库攻略(pip和Anaconda)
Oct 15 Python
解决numpy数组互换两行及赋值的问题
Apr 17 Python
以一段代码为实例快速入门Python2.7
Mar 31 #Python
11个并不被常用但对开发非常有帮助的Python库
Mar 31 #Python
Python的Flask框架中@app.route的用法教程
Mar 31 #Python
使用Python的Flask框架实现视频的流媒体传输
Mar 31 #Python
在Python3中初学者应会的一些基本的提升效率的小技巧
Mar 31 #Python
使用IronPython把Python脚本集成到.NET程序中的教程
Mar 31 #Python
提升Python程序运行效率的6个方法
Mar 31 #Python
You might like
php 实现进制转换(二进制、八进制、十六进制)互相转换实现代码
2010/10/22 PHP
php _autoload自动加载类与机制分析
2012/02/10 PHP
PHP中几个常用的魔术常量
2012/02/23 PHP
PHP实现手机归属地查询API接口实现代码
2012/08/27 PHP
理解php依赖注入和控制反转
2016/05/11 PHP
PHP异常处理定义与使用方法分析
2017/07/25 PHP
PHP快速排序算法实现的原理及代码详解
2019/04/03 PHP
laravel-admin 中列表筛选方法
2019/10/03 PHP
从盛大通行证上摘下来的身份证验证js代码
2011/01/11 Javascript
js图片延迟加载的实现方法及思路
2013/07/22 Javascript
jquery衣服颜色选取插件效果代码分享
2015/08/28 Javascript
AngularJS 让人爱不释手的八种功能
2016/03/23 Javascript
javascript运算符语法全面概述
2016/07/14 Javascript
BootstrapTable+KnockoutJS自定义T4模板快速生成增删改查页面
2016/08/01 Javascript
jQuery Masonry瀑布流插件使用方法详解
2017/01/18 Javascript
javascript深拷贝的原理与实现方法分析
2017/04/10 Javascript
jQuery实现每隔一段时间自动更换样式的方法分析
2018/05/03 jQuery
详解webpack运行Babel教程
2018/06/13 Javascript
vue文件运行的方法教学
2019/02/12 Javascript
详谈Object.defineProperty 及实现数据双向绑定
2020/07/18 Javascript
[02:30]辉夜杯主赛事第二日胜者组半决赛 CDEC.Y赛后采访
2015/12/26 DOTA
python操作摄像头截图实现远程监控的例子
2014/03/25 Python
Python实现将Excel转换成xml的方法示例
2018/08/25 Python
Python类装饰器实现方法详解
2018/12/21 Python
python3获取当前目录的实现方法
2019/07/29 Python
CSS3 Backgrounds属性相关介绍
2011/05/11 HTML / CSS
HTML5 canvas 基本语法
2009/08/26 HTML / CSS
HTML5新增的Css选择器、伪类介绍
2013/08/07 HTML / CSS
意大利在线购买隐形眼镜网站:VisionDirect.it
2019/03/18 全球购物
2014四风问题对照检查材料范文
2014/09/15 职场文书
医院党的群众路线教育实践活动学习心得体会
2014/10/30 职场文书
工作收入证明范本
2015/06/12 职场文书
老乡会致辞
2015/07/28 职场文书
交通安全主题班会
2015/08/12 职场文书
2016大学生社会实践单位评语
2015/12/01 职场文书
接收函
2019/04/22 职场文书