Python制作数据预测集成工具(值得收藏)


Posted in Python onAugust 21, 2020

大数据预测是大数据最核心的应用,是它将传统意义的预测拓展到“现测”。大数据预测的优势体现在,它把一个非常困难的预测问题,转化为一个相对简单的描述问题,而这是传统小数据集根本无法企及的。从预测的角度看,大数据预测所得出的结果不仅仅是用于处理现实业务的简单、客观的结论,更是能用于帮助企业经营的决策。

在过去,人们的决策主要是依赖 20% 的结构化数据,而大数据预测则可以利用另外 80% 的非结构化数据来做决策。大数据预测具有更多的数据维度,更快的数据频度和更广的数据宽度。与小数据时代相比,大数据预测的思维具有 3 大改变:实样而非抽样;预测效率而非精确;相关关系而非因果关系。

而今天我们就将利用python制作可视化的大数据预测部分集成工具,其中数据在这里使用一个实验中的数据。普遍性的应用则直接从文件读取即可。其中的效果图如下:

Python制作数据预测集成工具(值得收藏)

实验前的准备

首先我们使用的python版本是3.6.5所用到的模块如下:

  • sklearn模块用来创建整个模型训练和保存调用以及算法的搭建框架等等。
  • numpy模块用来处理数据矩阵运算。
  • matplotlib模块用来可视化拟合模型效果。
  • Pillow库用来加载图片至GUI界面。
  • Pandas模块用来读取csv数据文件。
  • Tkinter用来创建GUI窗口程序。

数据的训练和训练的GUI窗口

经过算法比较,发现这里我们选择使用sklearn简单的多元回归进行拟合数据可以达到比较好的效果。

(1)首先是是数据的读取,通过设定选定文件夹函数来读取文件,加载数据的效果:

'''选择文件功能''' 
def selectPath(): 
  # 选择文件path_接收文件地址 
  path_ =tkinter.filedialog.askopenfilename() 
  # 通过replace函数替换绝对文件地址中的/来使文件可被程序读取 
  # 注意:\\转义后为\,所以\\\\转义后为\\ 
  path_ =path_.replace("/", "\\\\") 
  # path设置path_的值 
  path.set(path_) 
  return path 
 
# 得到的DataFrame读入所有数据 
data = pd.read_excel(FILENAME, header=0, usecols="A,B,C,D,E,F,G,H,I") 
# DataFrame转化为array 
DataArray = data.values 
# 读取已使用年限作为标签 
Y = DataArray[:, 8] 
# 读取其他参数作为自变量,影响因素 
X = DataArray[:, 0:8] 
# 字符串转变为整数 
for i in range(len(Y)): 
  Y[i] = int(Y[i].replace("年", "")) 
X = np.array(X) # 转化为array 
Y = np.array(Y) # 转化为array 
 
root = Tk() 
root.geometry("+500+260") 
# 背景图设置 
canvas = tk.Canvas(root, width=600, height=200, bd=0, highlightthickness=0) 
imgpath = '1.jpg' 
img = Image.open(imgpath) 
photo = ImageTk.PhotoImage(img) 
#背景图大小设置 
canvas.create_image(700, 400, image=photo) 
canvas.pack() 
path = StringVar() 
#标签名称位置 
label1=tk.Label(text = "目标路径:") 
label1.pack() 
e1=tk.Entry( textvariable = path) 
e1.pack() 
bn1=tk.Button(text = "路径选择", command = selectPath) 
bn1.pack() 
bn2=tk.Button(text = "模型训练", command = train) 
bn2.pack() 
bn3=tk.Button(text = "模型预测", command = test) 
bn3.pack() 
#标签按钮等放在背景图上 
canvas.create_window(50, 50, width=150, height=30, 
           window=label1) 
canvas.create_window(280, 50, width=300, height=30, 
           window=e1) 
canvas.create_window(510, 50, width=150, height=30, 
           window=bn1) 
canvas.create_window(50, 100, width=150, height=30, 
           window=bn2) 
canvas.create_window(510, 100, width=150, height=30, 
           window=bn3) 
 
root.mainloop()

效果如下可见:

Python制作数据预测集成工具(值得收藏)

(2)然后是数据的拟合和可视化模型效果:

# 模型拟合 
reg = LinearRegression() 
reg.fit(X, Y) 
# 预测效果 
predict = reg.predict(np.array([X[0]])) 
Y_predict = reg.predict(X) 
print(Y_predict) 
# 横坐标 
x_label = [] 
for i in range(len(Y)): 
  x_label.append(i) 
# 绘图 
fig, ax = plt.subplots() 
# 真实值分布散点图 
plt.scatter(x_label, Y) 
# 预测值分布散点图 
plt.scatter(x_label, Y_predict) 
# 预测值拟合直线图 
plt.plot(x_label, Y_predict) 
# 横纵坐标 
ax.set_xlabel('预测值与真实值模型拟合效果图') 
ax.set_ylabel('蓝色为真实值,黄色为预测值') 
# 将绘制的图形显示到tkinter:创建属于root的canvas画布,并将图f置于画布上 
canvas = FigureCanvasTkAgg(fig, master=root) 
canvas.draw() # 注意show方法已经过时了,这里改用draw 
canvas.get_tk_widget().pack() 
# matplotlib的导航工具栏显示上来(默认是不会显示它的) 
toolbar = NavigationToolbar2Tk(canvas, root) 
toolbar.update() 
canvas._tkcanvas.pack() 
#弹窗显示 
messagebox.showinfo(title='模型情况', message="模型训练完成!") 
其中的效果如下可见:

其中的效果如下可见:

Python制作数据预测集成工具(值得收藏)

模型的预测和使用

其中模型的预测主要通过两种方式进行预测,分别是:手动输入单个数据进行预测和读取文件进行预测。

其中手动输入数据进行预测需要设置更多的GUI按钮,其中代码如下:

#子窗口 
LOVE = Toplevel(root) 
LOVE.geometry("+100+260") 
LOVE.title = "模型测试" 
#子窗口各标签名 
label = ["上升沿斜率(v/us)", "下降沿斜率(v/us)", "脉宽(ns)", "低状态电平(mv)", "低电平方差(mv2)x10-3", "高状态电平(v)", "高电平方差(v2)", "信号质量因子"] 
Label(LOVE, text="1、输入参数预测", font=("微软雅黑", 20)).grid(row=0, column=0) 
#标签名称,字体位置 
Label(LOVE, text=label[0], font=("微软雅黑",10)).grid(row=1, column=0) 
Label(LOVE, text=label[1], font=("微软雅黑", 10)).grid(row=1, column=1) 
Label(LOVE, text=label[2], font=("微软雅黑", 10)).grid(row=1, column=2) 
Label(LOVE, text=label[3], font=("微软雅黑", 10)).grid(row=1, column=3) 
Label(LOVE, text=label[4], font=("微软雅黑", 10)).grid(row=1, column=4) 
Label(LOVE, text=label[5], font=("微软雅黑", 10)).grid(row=1, column=5) 
Label(LOVE, text=label[6], font=("微软雅黑", 10)).grid(row=1, column=6) 
Label(LOVE, text=label[7], font=("微软雅黑", 10)).grid(row=1, column=7) 
#编辑框位置和字体 
en1=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en1.grid(row=2, column=0) 
en2=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en2.grid(row=2, column=1) 
en3=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en3.grid(row=2, column=2) 
en4=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en4.grid(row=2, column=3) 
en5=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en5.grid(row=2, column=4) 
en6=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en6.grid(row=2, column=5) 
en7=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en7.grid(row=2, column=6) 
en8=tk.Entry(LOVE, font=("微软雅黑", 8)) 
en8.grid(row=2, column=7) 
Label(LOVE, text="", font=("微软雅黑", 10)).grid(row=3, column=0) 
#测试输入框预测 
def pp(): 
  x=np.array([int(en1.get()),int(en2.get()),int(en3.get()),int(en4.get()),int(en5.get()),int(en6.get()),int(en7.get()),int(en8.get())]) 
  # 预测效果 
  predict = reg.predict(np.array([x])) 
  Label(LOVE, text="预测结果已使用年数为:"+str(predict[0])+"年", font=("微软雅黑", 10)).grid(row=4, column=3) 
  print(predict) 
Button(LOVE, text="预测:", font=("微软雅黑", 15),command=pp).grid(row=4, column=0) 
Label(LOVE, text="2、选择文件预测", font=("微软雅黑", 20)).grid(row=5, column=0) 
path1 = StringVar() 
label1 = tk.Label(LOVE,text="目标路径:", font=("微软雅黑", 10)) 
label1.grid(row=6, column=0) 
e1 = tk.Entry(LOVE,textvariable=path1, font=("微软雅黑", 10)) 
e1.grid(row=6, column=2) 
label = ["上升沿斜率(v/us)", "下降沿斜率(v/us)", "脉宽(ns)", "低状态电平(mv)", "低电平方差(mv2)x10-3", "高状态电平(v)", "高电平方差(v2)", 
       "信号质量因子"] 
  n = 0 
  for i in predict_value: 
    print(str(label) + "分别为" + str(X[n]) + "预测出来的结果为:" + str(i) + "年" + "\n") 
    f = open("预测结果.txt", "a") 
    f.write(str(label) + "分别为" + str(X[n]) + "预测出来的结果为:" + str(i) + "年" + "\n") 
    f.close() 
    f = open("result.txt", "a") 
    f.write(str(i) + "\n") 
    f.close() 
    n += 1 
  messagebox.showinfo(title='模型情况', message="预测结果保存在当前文件夹下的TXT文件中!") 
  os.system("result.txt") 
  os.system("预测结果.txt") 
Button(LOVE, text="预测:", font=("微软雅黑", 15), command=ppt).grid(row=7, column=0)

效果如下可见:

Python制作数据预测集成工具(值得收藏)

选择文件进行读取预测和模型训练数据的读取类似,代码如下:

#选择文件预测 
def selectPath1(): 
  # 选择文件path_接收文件地址 
  path_ =tkinter.filedialog.askopenfilename() 
  # 通过replace函数替换绝对文件地址中的/来使文件可被程序读取 
  # 注意:\\转义后为\,所以\\\\转义后为\\ 
  path_ =path_.replace("/", "\\\\") 
  # path设置path_的值 
  path1.set(path_) 
  return path 
bn1 = tk.Button(LOVE,text="路径选择", font=("微软雅黑", 10), command=selectPath1) 
bn1.grid(row=6, column=6) 
def ppt(): 
  try: 
    os.remove("预测结果.txt") 
    os.remove("result.txt") 
  except: 
    pass 
  # 文件的名字 
  FILENAME =path1.get() 
  # 禁用科学计数法 
  pd.set_option('float_format', lambda x: '%.3f' % x) 
  np.set_printoptions(threshold=np.inf) 
  # 得到的DataFrame读入所有数据 
  data =pd.read_excel(FILENAME, header=0, usecols="A,B,C,D,E,F,G,H") 
  # DataFrame转化为array 
  DataArray =data.values 
  # 读取其他参数作为自变量,影响因素 
  X = DataArray[:,0:8] 
  predict_value = reg.predict(X) 
  print(predict_value)

效果如下:

Python制作数据预测集成工具(值得收藏)

由于读取文件进行预测的话,数据较多故直接存储在TXT中方便查看

Python制作数据预测集成工具(值得收藏)

以上就是Python制作数据预测集成工具(值得收藏)的详细内容,更多关于python 数据预测的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
浅谈python 线程池threadpool之实现
Nov 17 Python
python使用openpyxl库修改excel表格数据方法
May 03 Python
Python之文字转图片方法
May 10 Python
Python给定一个句子倒序输出单词以及字母的方法
Dec 20 Python
python3+selenium实现126邮箱登陆并发送邮件功能
Jan 23 Python
python 的 scapy库,实现网卡收发包的例子
Jul 23 Python
python读取word 中指定位置的表格及表格数据
Oct 23 Python
python实现二分类的卡方分箱示例
Nov 22 Python
PIL包中Image模块的convert()函数的具体使用
Feb 26 Python
python使用yaml 管理selenium元素的示例
Dec 01 Python
我对PyTorch dataloader里的shuffle=True的理解
May 20 Python
关于python中模块和重载的问题
Nov 02 Python
简述 Python 的类和对象
Aug 21 #Python
DRF框架API版本管理实现方法解析
Aug 21 #Python
Django rest framework分页接口实现原理解析
Aug 21 #Python
Python -m参数原理及使用方法解析
Aug 21 #Python
python使用布隆过滤器的实现示例
Aug 20 #Python
QT5 Designer 打不开的问题及解决方法
Aug 20 #Python
Python配置pip国内镜像源的实现
Aug 20 #Python
You might like
PHP句法规则详解 入门学习
2011/11/09 PHP
CodeIgniter图像处理类的深入解析
2013/06/17 PHP
PHP Hash算法:Times33算法代码实例
2015/05/13 PHP
php、java、android、ios通用的3des方法(推荐)
2016/09/09 PHP
将list转换为json失败的原因
2013/12/17 Javascript
Angularjs基础知识及示例汇总
2015/01/22 Javascript
Javascript中this关键字的一些小知识
2015/03/15 Javascript
原创jQuery弹出层插件分享
2015/04/02 Javascript
JS对大量数据进行多重过滤的方法
2016/11/04 Javascript
JavaScript之Vue.js【入门基础】
2016/12/06 Javascript
javascript实现将数字转成千分位的方法小结【5种方式】
2016/12/11 Javascript
详解vue-cli + webpack 多页面实例配置优化方法
2017/07/13 Javascript
JS实现图片拖拽交换效果
2018/11/30 Javascript
JavaScript静态作用域和动态作用域实例详解
2019/06/17 Javascript
node.js实现上传文件功能
2019/07/15 Javascript
解决Layui数据表格的宽高问题
2019/09/28 Javascript
Python django实现简单的邮件系统发送邮件功能
2017/07/14 Python
Python中摘要算法MD5,SHA1简介及应用实例代码
2018/01/09 Python
python numpy元素的区间查找方法
2018/11/14 Python
python多个模块py文件的数据共享实例
2019/01/11 Python
如何安装并使用conda指令管理python环境
2019/07/10 Python
Flask教程之重定向与错误处理实例分析
2019/08/01 Python
Python3多线程版TCP端口扫描器
2019/08/31 Python
Python变量格式化输出实现原理解析
2020/08/06 Python
python获取本周、上周、本月、上月及本季的时间代码实例
2020/09/08 Python
Python基于tkinter canvas实现图片裁剪功能
2020/11/05 Python
Skyscanner台湾:全球知名的旅行比价引擎
2018/07/01 全球购物
Myprotein荷兰官网:欧洲第一运动营养品牌
2020/07/11 全球购物
索引覆盖(Index Covering)查询含义
2012/02/18 面试题
群众路线批评与自我批评
2014/02/06 职场文书
客服专员岗位职责
2014/02/28 职场文书
班主任新年寄语
2014/04/04 职场文书
银行先进个人事迹材料
2014/05/11 职场文书
市委常委会班子党的群众路线教育实践活动整改方案
2014/10/25 职场文书
2015迎新晚会活动总结
2015/07/16 职场文书
学校教学管理制度
2015/08/06 职场文书