Python实现聚类K-means算法详解


Posted in Python onJuly 15, 2022

K-means(K均值)算法是最简单的一种聚类算法,它期望最小化平方误差

Python实现聚类K-means算法详解

:为避免运行时间过长,通常设置一个最大运行轮数或最小调整幅度阈值,若到达最大轮数或调整幅度小于阈值,则停止运行。

下面我们用python来实现一下K-means算法:我们先尝试手动实现这个算法,再用sklearn库中的KMeans类来实现。数据我们采用《机器学习》的西瓜数据(P202表9.1):

# 下面的内容保存在 melons.txt 中
# 第一列为西瓜的密度;第二列为西瓜的含糖率。我们要把这30个西瓜分为3类
0.697 0.460
0.774 0.376
0.634 0.264
0.608 0.318
0.556 0.215
0.403 0.237
0.481 0.149
0.437 0.211
0.666 0.091
0.243 0.267
0.245 0.057
0.343 0.099
0.639 0.161
0.657 0.198
0.360 0.370
0.593 0.042
0.719 0.103
0.359 0.188
0.339 0.241
0.282 0.257
0.748 0.232
0.714 0.346
0.483 0.312
0.478 0.437
0.525 0.369
0.751 0.489
0.532 0.472
0.473 0.376
0.725 0.445
0.446 0.459

手动实现

我们用到的库有matplotlibnumpy,如果没有需要先用pip安装一下。

import random
import numpy as np
import matplotlib.pyplot as plt

下面定义一些数据:

k = 3 # 要分的簇数
rnd = 0 # 轮次,用于控制迭代次数(见上文)
ROUND_LIMIT = 100 # 轮次的上限
THRESHOLD = 1e-10 # 单轮改变距离的阈值,若改变幅度小于该阈值,算法终止
melons = [] # 西瓜的列表
clusters = [] # 簇的列表,clusters[i]表示第i簇包含的西瓜

从melons.txt读取数据,保存在列表中:

f = open('melons.txt', 'r')
for line in f:
	# 把字符串转化为numpy中的float64类型
    melons.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64))

从 m m m个数据中随机挑选出 k k k个,对应上面算法的第 1 1 1行:

# random的sample函数从列表中随机挑选出k个样本(不重复)。我们在这里把这些样本作为均值向量
mean_vectors = random.sample(melons, k)

下面是算法的主要部分。

# 这个while对应上面算法的2-17行
while True:
    rnd += 1 # 轮次增加
    change = 0 # 把改变幅度重置为0

	# 清空对簇的划分,对应上面算法的第3行
    clusters = []
    for i in range(k):
        clusters.append([])
    # 这个for对应上面算法的4-8行
    for melon in melons:
    	'''
    	argmin 函数找出容器中最小的下标,在这里这个目标容器是
    	list(map(lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors)),
    	它表示melon与mean_vectors中所有向量的距离列表。
    	(numpy.linalg.norm计算向量的范数,ord = 2即欧几里得范数,或模长)
    	'''
        c = np.argmin(
            list(map( lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors))
        )
        clusters[c].append(melon)
	# 这个for对应上面算法的9-16行
    for i in range(k):
    	# 求每个簇的新均值向量
        new_vector = np.zeros((1,2))
        for melon in clusters[i]:
            new_vector += melon
        new_vector /= len(clusters[i])

        # 累加改变幅度并更新均值向量
        change += np.linalg.norm(mean_vectors[i] - new_vector, ord = 2)
        mean_vectors[i] = new_vector
	# 若超过设定的轮次或者变化幅度<预先设定的阈值,结束算法
    if rnd > ROUND_LIMIT or change < THRESHOLD:
        break
print('最终迭代%d轮'%rnd)

最后我们绘图来观察一下划分的结果:

colors = ['red', 'green', 'blue']

# 每个簇换一下颜色,同时迭代簇和颜色两个列表
for i, col in zip(range(k), colors):
    for melon in clusters[i]:
    	# 绘制散点图
        plt.scatter(melon[0], melon[1], color = col)
plt.show()

划分结果(由于最开始的 k k k个均值向量随机选取,每次划分的结果可能会不同):

Python实现聚类K-means算法详解

完整代码:

import random
import numpy as np
import matplotlib.pyplot as plt

k = 3
rnd = 0
ROUND_LIMIT = 10
THRESHOLD = 1e-10
melons = []
clusters = []
f = open('melons.txt', 'r')
for line in f:
    melons.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64))
mean_vectors = random.sample(melons, k)

while True:
    rnd += 1
    change = 0
    clusters = []
    for i in range(k):
        clusters.append([])
    for melon in melons:
        c = np.argmin(
            list(map( lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors))
        )
        clusters[c].append(melon)
    for i in range(k):
        new_vector = np.zeros((1,2))
        for melon in clusters[i]:
            new_vector += melon
        new_vector /= len(clusters[i])

        change += np.linalg.norm(mean_vectors[i] - new_vector, ord = 2)
        mean_vectors[i] = new_vector

    if rnd > ROUND_LIMIT or change < THRESHOLD:
        break
print('最终迭代%d轮'%rnd)
colors = ['red', 'green', 'blue']
for i, col in zip(range(k), colors):
    for melon in clusters[i]:
        plt.scatter(melon[0], melon[1], color = col)
plt.show()

sklearn库中的KMeans

这种经典算法显然不需要我们反复地造轮子,被广泛使用的python机器学习库sklearn已经提供了该算法的实现。sklearn的官方文档中给了我们一个示例:

>>> from sklearn.cluster import KMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
...               [10, 2], [10, 4], [10, 0]])
>>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
>>> kmeans.labels_
array([1, 1, 1, 0, 0, 0], dtype=int32)
>>> kmeans.predict([[0, 0], [12, 3]])
array([1, 0], dtype=int32)
>>> kmeans.cluster_centers_
array([[10.,  2.],
       [ 1.,  2.]])

可以看出,X即要聚类的数据(1,2),(1,4),(1,0)等。
KMeans类的初始化参数n_clusters即簇数 k k k;
random_state是用于初始化选取 k k k个向量的随机数种子;
kmeans.labels_即每个点所属的簇;
kmeans.predict方法预测新的数据属于哪个簇;
kmeans.cluster_centers_返回每个簇的中心。
我们就改造一下这个简单的示例,完成对上面西瓜的聚类。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

X = []
f = open('melons.txt', 'r')
for line in f:
    X.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64))
kmeans = KMeans(n_clusters = 3, random_state = 0).fit(X)
colors = ['red', 'green', 'blue']
for i, cluster in enumerate(kmeans.labels_):
    plt.scatter(X[i][0], X[i][1], color = colors[cluster])
plt.show()

运行结果如下,可以看到和我们手写的聚类结果基本一致:

Python实现聚类K-means算法详解

到此这篇关于Python实现聚类K-means算法详解的文章就介绍到这了,更多相关Python K-means算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python操作MySQL简单实现方法
Jan 26 Python
利用python批量给云主机配置安全组的方法教程
Jun 21 Python
Python实现的密码强度检测器示例
Aug 23 Python
python中实现k-means聚类算法详解
Nov 11 Python
TensorFlow用expand_dim()来增加维度的方法
Jul 26 Python
使用python实现http及ftp服务进行数据传输的方法
Oct 26 Python
Django实现一对多表模型的跨表查询方法
Dec 18 Python
PyQt4实时显示文本内容GUI的示例
Jun 14 Python
python 实现创建文件夹和创建日志文件的方法
Jul 07 Python
Python中print函数简单使用总结
Aug 05 Python
解决PyCharm无法使用lxml库的问题(图解)
Dec 22 Python
详解Django的MVT设计模式
Apr 29 Python
python自动获取微信公众号最新文章的实现代码
Jul 15 #Python
pytorch实现加载保存查看checkpoint文件
Jul 15 #Python
pytest实现多进程与多线程运行超好用的插件
Jul 15 #Python
python如何将mat文件转为png
Jul 15 #Python
python读取mat文件生成h5文件的实现
Jul 15 #Python
全网非常详细的pytest配置文件
Jul 15 #Python
Python如何加载模型并查看网络
Jul 15 #Python
You might like
Re:从零开始的异世界生活 第2季 开播啦
2020/07/24 日漫
PHP_Flame(Version:Progress)的原代码
2006/10/09 PHP
php实例分享之html转为rtf格式
2014/06/02 PHP
PHP连接MSSQL2008/2005数据库(SQLSRV)配置实例
2014/10/22 PHP
laravel请求参数校验方法
2019/10/10 PHP
Laravel基础_关于view共享数据的示例讲解
2019/10/14 PHP
javascript getElementsByClassName 和js取地址栏参数
2010/01/02 Javascript
jQuery 关于伪类选择符的使用说明
2013/04/24 Javascript
jquery绑定事件不生效的解决方法
2014/02/11 Javascript
ie9 提示'console' 未定义问题的解决方法
2014/03/20 Javascript
JQuery zClip插件实现复制页面内容到剪贴板
2015/11/02 Javascript
JavaScript使用DeviceOne开发实战(三)仿微信应用
2015/12/02 Javascript
AngularJS之页面跳转Route实例代码
2017/03/10 Javascript
Node.js安装配置图文教程
2017/05/10 Javascript
Vue学习笔记进阶篇之函数化组件解析
2017/07/21 Javascript
vuejs+element-ui+laravel5.4上传文件的示例代码
2017/08/12 Javascript
老生常谈JavaScript获取CSS样式的方法(兼容各浏览器)
2018/09/19 Javascript
node.js文件的复制、创建文件夹等相关操作
2021/02/05 Javascript
Nest.js环境变量配置与序列化详解
2021/02/21 Javascript
Python实现获取操作系统版本信息方法
2015/04/08 Python
基于torch.where和布尔索引的速度比较
2020/01/02 Python
详解python tcp编程
2020/08/24 Python
数以千计的折扣工业产品:ESE Direct
2018/05/20 全球购物
来自世界上最好大学的在线课程:edX
2018/10/16 全球购物
美国工业用品采购网站:Zoro.com
2020/10/27 全球购物
JRE、JDK、JVM之间的关系怎样
2012/05/16 面试题
Python是如何进行类型转换的
2013/06/09 面试题
成功的酒店创业计划书
2013/12/27 职场文书
校园达人秀策划书
2014/01/12 职场文书
庆祝新中国成立65周年“向国旗敬礼”网上签名寄语
2014/09/27 职场文书
党员批评与自我批评材料
2014/10/14 职场文书
英文辞职信范文
2015/05/13 职场文书
2019财务毕业实习报告
2019/06/27 职场文书
MySQL 查询速度慢的原因
2021/05/25 MySQL
Python批量解压&压缩文件夹的示例代码
2022/04/04 Python
virtualenv隔离Python环境的问题解析
2022/06/21 Python