Python实现聚类K-means算法详解


Posted in Python onJuly 15, 2022

K-means(K均值)算法是最简单的一种聚类算法,它期望最小化平方误差

Python实现聚类K-means算法详解

:为避免运行时间过长,通常设置一个最大运行轮数或最小调整幅度阈值,若到达最大轮数或调整幅度小于阈值,则停止运行。

下面我们用python来实现一下K-means算法:我们先尝试手动实现这个算法,再用sklearn库中的KMeans类来实现。数据我们采用《机器学习》的西瓜数据(P202表9.1):

# 下面的内容保存在 melons.txt 中
# 第一列为西瓜的密度;第二列为西瓜的含糖率。我们要把这30个西瓜分为3类
0.697 0.460
0.774 0.376
0.634 0.264
0.608 0.318
0.556 0.215
0.403 0.237
0.481 0.149
0.437 0.211
0.666 0.091
0.243 0.267
0.245 0.057
0.343 0.099
0.639 0.161
0.657 0.198
0.360 0.370
0.593 0.042
0.719 0.103
0.359 0.188
0.339 0.241
0.282 0.257
0.748 0.232
0.714 0.346
0.483 0.312
0.478 0.437
0.525 0.369
0.751 0.489
0.532 0.472
0.473 0.376
0.725 0.445
0.446 0.459

手动实现

我们用到的库有matplotlibnumpy,如果没有需要先用pip安装一下。

import random
import numpy as np
import matplotlib.pyplot as plt

下面定义一些数据:

k = 3 # 要分的簇数
rnd = 0 # 轮次,用于控制迭代次数(见上文)
ROUND_LIMIT = 100 # 轮次的上限
THRESHOLD = 1e-10 # 单轮改变距离的阈值,若改变幅度小于该阈值,算法终止
melons = [] # 西瓜的列表
clusters = [] # 簇的列表,clusters[i]表示第i簇包含的西瓜

从melons.txt读取数据,保存在列表中:

f = open('melons.txt', 'r')
for line in f:
	# 把字符串转化为numpy中的float64类型
    melons.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64))

从 m m m个数据中随机挑选出 k k k个,对应上面算法的第 1 1 1行:

# random的sample函数从列表中随机挑选出k个样本(不重复)。我们在这里把这些样本作为均值向量
mean_vectors = random.sample(melons, k)

下面是算法的主要部分。

# 这个while对应上面算法的2-17行
while True:
    rnd += 1 # 轮次增加
    change = 0 # 把改变幅度重置为0

	# 清空对簇的划分,对应上面算法的第3行
    clusters = []
    for i in range(k):
        clusters.append([])
    # 这个for对应上面算法的4-8行
    for melon in melons:
    	'''
    	argmin 函数找出容器中最小的下标,在这里这个目标容器是
    	list(map(lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors)),
    	它表示melon与mean_vectors中所有向量的距离列表。
    	(numpy.linalg.norm计算向量的范数,ord = 2即欧几里得范数,或模长)
    	'''
        c = np.argmin(
            list(map( lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors))
        )
        clusters[c].append(melon)
	# 这个for对应上面算法的9-16行
    for i in range(k):
    	# 求每个簇的新均值向量
        new_vector = np.zeros((1,2))
        for melon in clusters[i]:
            new_vector += melon
        new_vector /= len(clusters[i])

        # 累加改变幅度并更新均值向量
        change += np.linalg.norm(mean_vectors[i] - new_vector, ord = 2)
        mean_vectors[i] = new_vector
	# 若超过设定的轮次或者变化幅度<预先设定的阈值,结束算法
    if rnd > ROUND_LIMIT or change < THRESHOLD:
        break
print('最终迭代%d轮'%rnd)

最后我们绘图来观察一下划分的结果:

colors = ['red', 'green', 'blue']

# 每个簇换一下颜色,同时迭代簇和颜色两个列表
for i, col in zip(range(k), colors):
    for melon in clusters[i]:
    	# 绘制散点图
        plt.scatter(melon[0], melon[1], color = col)
plt.show()

划分结果(由于最开始的 k k k个均值向量随机选取,每次划分的结果可能会不同):

Python实现聚类K-means算法详解

完整代码:

import random
import numpy as np
import matplotlib.pyplot as plt

k = 3
rnd = 0
ROUND_LIMIT = 10
THRESHOLD = 1e-10
melons = []
clusters = []
f = open('melons.txt', 'r')
for line in f:
    melons.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64))
mean_vectors = random.sample(melons, k)

while True:
    rnd += 1
    change = 0
    clusters = []
    for i in range(k):
        clusters.append([])
    for melon in melons:
        c = np.argmin(
            list(map( lambda vec: np.linalg.norm(melon - vec, ord = 2), mean_vectors))
        )
        clusters[c].append(melon)
    for i in range(k):
        new_vector = np.zeros((1,2))
        for melon in clusters[i]:
            new_vector += melon
        new_vector /= len(clusters[i])

        change += np.linalg.norm(mean_vectors[i] - new_vector, ord = 2)
        mean_vectors[i] = new_vector

    if rnd > ROUND_LIMIT or change < THRESHOLD:
        break
print('最终迭代%d轮'%rnd)
colors = ['red', 'green', 'blue']
for i, col in zip(range(k), colors):
    for melon in clusters[i]:
        plt.scatter(melon[0], melon[1], color = col)
plt.show()

sklearn库中的KMeans

这种经典算法显然不需要我们反复地造轮子,被广泛使用的python机器学习库sklearn已经提供了该算法的实现。sklearn的官方文档中给了我们一个示例:

>>> from sklearn.cluster import KMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
...               [10, 2], [10, 4], [10, 0]])
>>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
>>> kmeans.labels_
array([1, 1, 1, 0, 0, 0], dtype=int32)
>>> kmeans.predict([[0, 0], [12, 3]])
array([1, 0], dtype=int32)
>>> kmeans.cluster_centers_
array([[10.,  2.],
       [ 1.,  2.]])

可以看出,X即要聚类的数据(1,2),(1,4),(1,0)等。
KMeans类的初始化参数n_clusters即簇数 k k k;
random_state是用于初始化选取 k k k个向量的随机数种子;
kmeans.labels_即每个点所属的簇;
kmeans.predict方法预测新的数据属于哪个簇;
kmeans.cluster_centers_返回每个簇的中心。
我们就改造一下这个简单的示例,完成对上面西瓜的聚类。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

X = []
f = open('melons.txt', 'r')
for line in f:
    X.append(np.array(line.split(' '), dtype = np.string_).astype(np.float64))
kmeans = KMeans(n_clusters = 3, random_state = 0).fit(X)
colors = ['red', 'green', 'blue']
for i, cluster in enumerate(kmeans.labels_):
    plt.scatter(X[i][0], X[i][1], color = colors[cluster])
plt.show()

运行结果如下,可以看到和我们手写的聚类结果基本一致:

Python实现聚类K-means算法详解

到此这篇关于Python实现聚类K-means算法详解的文章就介绍到这了,更多相关Python K-means算法内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python使用正则匹配实现抓图代码分享
Apr 02 Python
Python检测生僻字的实现方法
Oct 23 Python
Python3 模块、包调用&amp;路径详解
Oct 25 Python
给你选择Python语言实现机器学习算法的三大理由
Nov 15 Python
Python使用Windows API创建窗口示例【基于win32gui模块】
May 09 Python
python爬虫之自制英汉字典
Jun 24 Python
opencv resize图片为正方形尺寸的实现方法
Dec 26 Python
pytorch masked_fill报错的解决
Feb 18 Python
Python实现AI自动抠图实例解析
Mar 05 Python
pyqt5中动画的使用详解
Apr 01 Python
python多线程semaphore实现线程数控制的示例
Aug 10 Python
如何Python使用re模块实现okenizer
Apr 30 Python
python自动获取微信公众号最新文章的实现代码
Jul 15 #Python
pytorch实现加载保存查看checkpoint文件
Jul 15 #Python
pytest实现多进程与多线程运行超好用的插件
Jul 15 #Python
python如何将mat文件转为png
Jul 15 #Python
python读取mat文件生成h5文件的实现
Jul 15 #Python
全网非常详细的pytest配置文件
Jul 15 #Python
Python如何加载模型并查看网络
Jul 15 #Python
You might like
php将HTML表格每行每列转为数组实现采集表格数据的方法
2015/04/03 PHP
php生成毫秒时间戳的实例讲解
2017/09/22 PHP
Mootools 1.2教程 函数
2009/09/15 Javascript
Whatever:hover 无需javascript让IE支持丰富伪类
2010/06/29 Javascript
javascript date格式化示例
2013/09/25 Javascript
图片动画横条广告带上下滚动的JS代码
2013/10/25 Javascript
两个数组去重的JS代码
2013/12/04 Javascript
js单独获取一个checkbox看其是否被选中
2014/09/22 Javascript
jQuery实现响应鼠标滚动的动感菜单效果
2015/09/21 Javascript
浅析AngularJS Filter用法
2015/12/28 Javascript
理解javascript中的严格模式
2016/02/01 Javascript
JavaScript实现替换字符串中最后一个字符的方法
2017/03/07 Javascript
js模仿微信朋友圈计算时间显示几天/几小时/几分钟/几秒之前
2017/04/27 Javascript
vue实现登陆登出的实现示例
2017/09/15 Javascript
javascript自定义事件功能与用法实例分析
2017/11/08 Javascript
基于 Vue 实现一个酷炫的 menu插件
2017/11/14 Javascript
浅谈Vue CLI 3结合Lerna进行UI框架设计
2019/04/14 Javascript
[59:35]DOTA2-DPC中国联赛定级赛 Aster vs DLG BO3第一场 1月8日
2021/03/11 DOTA
答题辅助python代码实现
2018/01/16 Python
django请求返回不同的类型图片json,xml,html的实例
2018/05/22 Python
python实现多人聊天室
2020/03/31 Python
python 获取一个值在某个区间的指定倍数的值方法
2018/11/12 Python
解决Django加载静态资源失败的问题
2019/07/28 Python
pytorch加载自定义网络权重的实现
2020/01/07 Python
基于python实现语音录入识别代码实例
2020/01/17 Python
将python字符串转化成长表达式的函数eval实例
2020/05/11 Python
在pycharm中关掉ipython console/PyDev操作
2020/06/09 Python
学生打架检讨书大全
2014/01/23 职场文书
运动会闭幕式解说词
2014/02/21 职场文书
诉前财产保全担保书
2014/05/20 职场文书
销售求职信范文
2014/05/26 职场文书
赔偿协议书
2015/01/27 职场文书
就业导师推荐信范文
2015/03/27 职场文书
2015年人力资源工作总结
2015/04/08 职场文书
唱歌比赛拉拉队口号
2015/12/25 职场文书
Win11 Build 21996.1 Dev版怎么样? win11系统截图欣赏
2021/11/21 数码科技