Python绘图之二维图与三维图详解


Posted in Python onAugust 04, 2020

各位工程师累了吗? 推荐一篇可以让你技术能力达到出神入化的网站"持久男"

1.二维绘图

a. 一维数据集

用 Numpy ndarray 作为数据传入 ply

1.

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(10)
print "y = %s"% y
x = range(len(y))
print "x=%s"% x
plt.plot(y)
plt.show()

Python绘图之二维图与三维图详解

Python绘图之二维图与三维图详解

2.操纵坐标轴和增加网格及标签的函数

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(10)
plt.plot(y.cumsum())
plt.grid(True) ##增加格点
plt.axis('tight') # 坐标轴适应数据量 axis 设置坐标轴
plt.show()

Python绘图之二维图与三维图详解

3.plt.xlim 和 plt.ylim 设置每个坐标轴的最小值和最大值

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(20)
plt.plot(y.cumsum())
plt.grid(True) ##增加格点
plt.xlim(-1,20)
plt.ylim(np.min(y.cumsum())- 1, np.max(y.cumsum()) + 1)

plt.show()

Python绘图之二维图与三维图详解

4. 添加标题和标签 plt.title, plt.xlabe, plt.ylabel 离散点, 线

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(20)

plt.figure(figsize=(7,4)) #画布大小
plt.plot(y.cumsum(),'b',lw = 1.5) # 蓝色的线
plt.plot(y.cumsum(),'ro') #离散的点
plt.grid(True)
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple Plot')
plt.show()

Python绘图之二维图与三维图详解

b. 二维数据集

np.random.seed(2000)
y = np.random.standard_normal((10, 2)).cumsum(axis=0)  #10行2列  在这个数组上调用cumsum 计算赝本数据在0轴(即第一维)上的总和
print y

Python绘图之二维图与三维图详解

1.两个数据集绘图

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))
plt.figure(figsize=(7,5))
plt.plot(y, lw = 1.5)
plt.plot(y, 'ro')
plt.grid(True)
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple plot')
plt.show()

Python绘图之二维图与三维图详解

2.添加图例 plt.legend(loc = 0)

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))
plt.figure(figsize=(7,5))
plt.plot(y[:,0], lw = 1.5,label = '1st')
plt.plot(y[:,1], lw = 1.5, label = '2st')
plt.plot(y, 'ro')
plt.grid(True)
plt.legend(loc = 0) #图例位置自动
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple plot')
plt.show()

Python绘图之二维图与三维图详解

3.使用2个 Y轴(左右)fig, ax1 = plt.subplots() ax2 = ax1.twinx()

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))

fig, ax1 = plt.subplots() # 关键代码1 plt first data set using first (left) axis

plt.plot(y[:,0], lw = 1.5,label = '1st')

plt.plot(y[:,0], 'ro')
plt.grid(True)
plt.legend(loc = 0) #图例位置自动
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple plot')

ax2 = ax1.twinx() #关键代码2 plt second data set using second(right) axis
plt.plot(y[:,1],'g', lw = 1.5, label = '2nd')
plt.plot(y[:,1], 'ro')
plt.legend(loc = 0)
plt.ylabel('value 2nd')
plt.show()

Python绘图之二维图与三维图详解

4.使用两个子图(上下,左右)plt.subplot(211)

通过使用 plt.subplots 函数,可以直接访问底层绘图对象,例如可以用它生成和第一个子图共享 x 轴的第二个子图.

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))

plt.figure(figsize=(7,5))
plt.subplot(211) #两行一列,第一个图
plt.plot(y[:,0], lw = 1.5,label = '1st')
plt.plot(y[:,0], 'ro')
plt.grid(True)
plt.legend(loc = 0) #图例位置自动
plt.axis('tight')
plt.ylabel('value')
plt.title('A simple plot')


plt.subplot(212) #两行一列.第二个图
plt.plot(y[:,1],'g', lw = 1.5, label = '2nd')
plt.plot(y[:,1], 'ro')
plt.grid(True)
plt.legend(loc = 0)
plt.xlabel('index')
plt.ylabel('value 2nd')
plt.axis('tight')
plt.show()

Python绘图之二维图与三维图详解

5.左右子图

有时候,选择两个不同的图标类型来可视化数据可能是必要的或者是理想的.利用子图方法:

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))

plt.figure(figsize=(10,5))
plt.subplot(121) #两行一列,第一个图
plt.plot(y[:,0], lw = 1.5,label = '1st')
plt.plot(y[:,0], 'ro')
plt.grid(True)
plt.legend(loc = 0) #图例位置自动
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('1st Data Set')

plt.subplot(122)
plt.bar(np.arange(len(y)), y[:,1],width=0.5, color='g',label = '2nc')
plt.grid(True)
plt.legend(loc=0)
plt.axis('tight')
plt.xlabel('index')
plt.title('2nd Data Set')
plt.show()

Python绘图之二维图与三维图详解

c.其他绘图样式,散点图,直方图等

1.散点图

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((1000, 2))
plt.figure(figsize=(7,5))
plt.scatter(y[:,0],y[:,1],marker='o')
plt.grid(True)
plt.xlabel('1st')
plt.ylabel('2nd')
plt.title('Scatter Plot')
plt.show()

Python绘图之二维图与三维图详解

2.直方图 plt.hist

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((1000, 2))
plt.figure(figsize=(7,5))
plt.hist(y,label=['1st','2nd'],bins=25)
plt.grid(True)
plt.xlabel('value')
plt.ylabel('frequency')
plt.title('Histogram')
plt.show()

Python绘图之二维图与三维图详解

3.直方图 同一个图中堆叠

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((1000, 2))
plt.figure(figsize=(7,5))
plt.hist(y,label=['1st','2nd'],color=['b','g'],stacked=True,bins=20)
plt.grid(True)
plt.xlabel('value')
plt.ylabel('frequency')
plt.title('Histogram')
plt.show()

Python绘图之二维图与三维图详解

4.箱型图 boxplot

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((1000, 2))
fig, ax = plt.subplots(figsize=(7,4))
plt.boxplot(y)

plt.grid(True)
plt.setp(ax,xticklabels=['1st' , '2nd'])
plt.xlabel('value')
plt.ylabel('frequency')
plt.title('Histogram')
plt.show()

Python绘图之二维图与三维图详解

5.绘制函数

from matplotlib.patches import Polygon
import numpy as np
import matplotlib.pyplot as plt

#1. 定义积分函数
def func(x):
  return 0.5 * np.exp(x)+1

#2.定义积分区间
a,b = 0.5, 1.5
x = np.linspace(0, 2 )
y = func(x)
#3.绘制函数图形
fig, ax = plt.subplots(figsize=(7,5))
plt.plot(x,y, 'b',linewidth=2)
plt.ylim(ymin=0)
#4.核心, 我们使用Polygon函数生成阴影部分,表示积分面积:
Ix = np.linspace(a,b)
Iy = func(Ix)
verts = [(a,0)] + list(zip(Ix, Iy))+[(b,0)]
poly = Polygon(verts,facecolor='0.7',edgecolor = '0.5')
ax.add_patch(poly)
#5.用plt.text和plt.figtext在图表上添加数学公式和一些坐标轴标签。
plt.text(0.5 *(a+b),1,r"$\int_a^b f(x)\mathrm{d}x$", horizontalalignment ='center',fontsize=20)
plt.figtext(0.9, 0.075,'$x$')
plt.figtext(0.075, 0.9, '$f(x)$')
#6. 分别设置x,y刻度标签的位置。
ax.set_xticks((a,b))
ax.set_xticklabels(('$a$','$b$'))
ax.set_yticks([func(a),func(b)])
ax.set_yticklabels(('$f(a)$','$f(b)$'))
plt.grid(True)

Python绘图之二维图与三维图详解

2.金融学图表 matplotlib.finance

1.烛柱图 candlestick

#!/etc/bin/python
#coding=utf-8
import matplotlib.pyplot as plt
import matplotlib.finance as mpf
start = (2014, 5,1)
end = (2014, 7,1)
quotes = mpf.quotes_historical_yahoo('^GDAXI',start,end)
# print quotes[:2]

fig, ax = plt.subplots(figsize=(8,5))
fig.subplots_adjust(bottom = 0.2)
mpf.candlestick(ax, quotes, width=0.6, colorup='b',colordown='r')
plt.grid(True)
ax.xaxis_date() #x轴上的日期
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(),rotation=30) #日期倾斜
plt.show()

Python绘图之二维图与三维图详解

2. plot_day_summary

该函数提供了一个相当类似的图标类型,使用方法和 candlestick 函数相同,使用类似的参数. 这里开盘价和收盘价不是由彩色矩形表示,而是由两条短水平线表示.

#!/etc/bin/python
#coding=utf-8
import matplotlib.pyplot as plt
import matplotlib.finance as mpf
start = (2014, 5,1)
end = (2014, 7,1)
quotes = mpf.quotes_historical_yahoo('^GDAXI',start,end)
# print quotes[:2]

fig, ax = plt.subplots(figsize=(8,5))
fig.subplots_adjust(bottom = 0.2)
mpf.plot_day_summary(ax, quotes, colorup='b',colordown='r')
plt.grid(True)
ax.xaxis_date() #x轴上的日期
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(),rotation=30) #日期倾斜
plt.show()

Python绘图之二维图与三维图详解

3.股价数据和成交量

#!/etc/bin/python
#coding=utf-8
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.finance as mpf
start = (2014, 5,1)
end = (2014, 7,1)
quotes = mpf.quotes_historical_yahoo('^GDAXI',start,end)
# print quotes[:2]

quotes = np.array(quotes)
fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(8,6))
mpf.candlestick(ax1, quotes, width=0.6,colorup='b',colordown='r')
ax1.set_title('Yahoo Inc.')
ax1.set_ylabel('index level')
ax1.grid(True)
ax1.xaxis_date()
plt.bar(quotes[:,0] - 0.25, quotes[:, 5], width=0.5)

ax2.set_ylabel('volume')
ax2.grid(True)
ax2.autoscale_view()
plt.setp(plt.gca().get_xticklabels(),rotation=30)
plt.show()

Python绘图之二维图与三维图详解

3.3D 绘图

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib.pyplot as plt

stike = np.linspace(50, 150, 24)
ttm = np.linspace(0.5, 2.5, 24)
stike, ttm = np.meshgrid(stike, ttm)
print stike[:2]

iv = (stike - 100) ** 2 / (100 * stike) /ttm
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(9,6))
ax = fig.gca(projection='3d')
surf = ax.plot_surface(stike, ttm, iv, rstride=2, cstride=2, cmap=plt.cm.coolwarm, linewidth=0.5, antialiased=True)
ax.set_xlabel('strike')
ax.set_ylabel('time-to-maturity')
ax.set_zlabel('implied volatility')

plt.show()

Python绘图之二维图与三维图详解

到此这篇关于Python绘图之二维图与三维图详解的文章就介绍到这了,更多相关Python绘图内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现上传样本到virustotal并查询扫描信息的方法
Oct 05 Python
Python入门篇之列表和元组
Oct 17 Python
用Python写一个无界面的2048小游戏
May 24 Python
Python 出现错误TypeError: ‘NoneType’ object is not iterable解决办法
Jan 12 Python
CentOS 6.5中安装Python 3.6.2的方法步骤
Dec 03 Python
利用python将图片转换成excel文档格式
Dec 30 Python
教你用Python写安卓游戏外挂
Jan 11 Python
用Pelican搭建一个极简静态博客系统过程解析
Aug 22 Python
python装饰器练习题及答案
Nov 01 Python
django框架两个使用模板实例
Dec 11 Python
git查看、创建、删除、本地、远程分支方法详解
Feb 18 Python
Python爬虫之Selenium设置元素等待的方法
Dec 04 Python
Python连接Impala实现步骤解析
Aug 04 #Python
python利用蒙版抠图(使用PIL.Image和cv2)输出透明背景图
Aug 04 #Python
Python如何给函数库增加日志功能
Aug 04 #Python
pycharm导入源码的具体步骤
Aug 04 #Python
python根据用户需求输入想爬取的内容及页数爬取图片方法详解
Aug 03 #Python
Python 如何调试程序崩溃错误
Aug 03 #Python
Python 捕获代码中所有异常的方法
Aug 03 #Python
You might like
AMFPHP php远程调用(RPC, Remote Procedure Call)工具 快速入门教程
2010/05/10 PHP
PHP文件去掉PHP注释空格的函数分析(PHP代码压缩)
2013/07/02 PHP
Yii实现自动加载类地图的方法
2015/04/01 PHP
php根据日期或时间戳获取星座信息和生肖等信息
2015/10/20 PHP
dojo 之基础篇(二)之从服务器读取数据
2007/03/24 Javascript
jQuery 使用手册(二)
2009/09/23 Javascript
再论Javascript的类继承
2011/03/05 Javascript
Jquery写一个鼠标拖动效果实现原理与代码
2012/12/24 Javascript
JS保留小数点(四舍五入、四舍六入)实现思路及实例
2013/04/25 Javascript
jquery实现智能感知连接外网搜索
2013/05/21 Javascript
为指定的元素添加遮罩层的示例代码
2014/01/15 Javascript
JavaScript中的Web worker多线程API研究
2014/12/06 Javascript
jQuery实现鼠标滚轮动态改变样式或效果
2015/01/05 Javascript
javascript模拟php函数in_array
2015/04/27 Javascript
jquery使用经验小结
2015/05/20 Javascript
JS实现淘宝支付宝网站的控制台菜单效果
2015/09/28 Javascript
JS 面向对象之继承---多种组合继承详解
2016/07/10 Javascript
JS简单获取客户端IP地址的方法【调用搜狐接口】
2016/09/05 Javascript
详解微信小程序开发之——wx.showToast(OBJECT)的使用
2017/01/18 Javascript
Angular.Js之Scope作用域的学习教程
2017/04/27 Javascript
vue项目中axios使用详解
2018/02/07 Javascript
JavaScript判断对象和数组的两种方法
2019/05/31 Javascript
vue调用语音播放的方法
2019/09/27 Javascript
Js图片点击切换轮播实现代码
2020/07/27 Javascript
js实现微信聊天效果
2020/08/09 Javascript
Vue+element+cookie记住密码功能的简单实现方法
2020/09/20 Javascript
[48:53]2014 DOTA2华西杯精英邀请赛 5 25 LGD VS VG第一场
2014/05/26 DOTA
[01:00]DOTA2 store: Collection of Artisan's Wonders
2015/08/12 DOTA
使用Django开发简单接口实现文章增删改查
2019/05/09 Python
scrapy数据存储在mysql数据库的两种方式(同步和异步)
2020/02/18 Python
python如何进入交互模式
2020/07/06 Python
python 基于opencv操作摄像头
2020/12/24 Python
Godiva巧克力英国官网:比利时歌帝梵巧克力
2018/08/28 全球购物
创伤外科专业推荐信范文
2013/11/19 职场文书
艾滋病宣传活动总结
2014/05/08 职场文书
2014年质检工作总结
2014/11/26 职场文书