Keras搭建自编码器操作


Posted in Python onJuly 03, 2020

简介:

传统机器学习任务任务很大程度上依赖于好的特征工程,但是特征工程往往耗时耗力,在视频、语音和视频中提取到有效特征就更难了,工程师必须在这些领域有非常深入的理解,并且需要使用专业算法提取这些数据的特征。深度学习则可以解决人工难以提取有效特征的问题,大大缓解机器学习模型对特征工程的依赖。

深度学习在早期一度被认为是一种无监督的特征学习过程,模仿人脑对特征逐层抽象的过程。这其中两点很重要:一是无监督学习;二是逐层训练。例如在图像识别问题中,假定我们有许多汽车图片,要如何利用计算机进行识别任务呢?如果从像素级开始进行训练分类器,那么绝大多数算法很难工作。如果我们提取高阶特征,比如汽车的车轮、汽车的车窗、车身等。那么就可以使用这些高阶特征非常准确的对图像进行分类。不过高阶特征都是由底层特征组成,这便是深度学习训练过程中所做的特征学习。

早年有学者发现,可以使用少量的基本特征进行组合拼装得到更高层抽象的特征,这其实就是我们常说的特征的稀疏表达。对图像任务来说,一张原始图片可以由较少的图片碎片组合得到。对语音识别任务来讲,绝大多数的声音也可以由一些基本的结构线性组合得到。对人脸识别任务来说,根据不同的器官,如:鼻子、嘴、眉毛、眼睛瞪,这些器官可以向上拼出不同样式的人脸,最后模型通过在图片中匹配这些不同样式的人脸来进行识别。在深度神经网络中,对每一层神经网络来说前一层的输出都是未加工的像素,而这一层则是对像素进行加工组织成更高阶的特征的过程(即前面提到过的图片碎片进行线性组合加工的过程)。

根据上述基本概念的描述,特征是可以不断抽象转为高一层特征的,那我们如何找到这些基本结构,然后如何抽象?这里引出无监督的自编码器来提取特征。自编码器--顾名思义,可以使用自身高阶特征编码自己。它的输入和输出是一致的。因此,它的基本思想是使用稀疏一些高阶特征重新组合来重构自己。自编码器的刚开始提出是Hinton在Science上发表文章,用来解决数据降维问题。此外,Hinton还提出了基于深度信念网络的无监督逐层训练的贪心算法,为训练很深的网络提供了一个可行的方案。深度信念网络的提出是使用逐层训练的方式提取特征,使得在有监督学习任务之前,使得网络权重初始化到一个比较好的位置。其思想与自编码器的非常相似。在此基础上,国内外学者又提出了自编码器的各种版本,如:稀疏自编码器、去噪自编码器等。

本文使用Keras深度学习开发库,在MNIST数据集上实现了简单自编码器、深度稀疏自编码器和卷积自编码器。

自编码器用途:

目前自编码器的应用主要有两个方面,第一是数据去噪,第二是为进行可视化而降维。配合适当的维度和稀疏约束,自编码器可以学习到比PCA等技术更有意思的数据投影。此外,在数据共有特征建模方面,也有叫广泛的应用。

1、简单自编码器

简单自编码器

from keras.layers import Input, Dense
from keras.models import Model
from keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
 
(x_train, _), (x_test, _) = mnist.load_data()
 
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
print(x_train.shape)
print(x_test.shape)
 
encoding_dim = 32
input_img = Input(shape=(784,))
 
encoded = Dense(encoding_dim, activation='relu')(input_img)
decoded = Dense(784, activation='sigmoid')(encoded)
 
autoencoder = Model(inputs=input_img, outputs=decoded)
encoder = Model(inputs=input_img, outputs=encoded)
 
encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
 
decoder = Model(inputs=encoded_input, outputs=decoder_layer(encoded_input))
 
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
 
autoencoder.fit(x_train, x_train, epochs=50, batch_size=256, 
  shuffle=True, validation_data=(x_test, x_test))
 
encoded_imgs = encoder.predict(x_test)
decoded_imgs = decoder.predict(encoded_imgs)
 
n = 10 # how many digits we will display
plt.figure(figsize=(20, 4))
for i in range(n):
 ax = plt.subplot(2, n, i + 1)
 plt.imshow(x_test[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
 
 ax = plt.subplot(2, n, i + 1 + n)
 plt.imshow(decoded_imgs[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

测试效果:

Keras搭建自编码器操作

2、深度自编码器、稀疏自编码器

为解决自编码重构损失大的问题,使用多层网络搭建自编码器。对隐层单元施加稀疏性约束的话,会得到更为紧凑的表达,只有一小部分神经元会被激活。在Keras中,我们可以通过添加一个activity_regularizer达到对某层激活值进行约束的目的

import numpy as np 
np.random.seed(1337) # for reproducibility 
 
from keras.datasets import mnist 
from keras.models import Model #泛型模型 
from keras.layers import Dense, Input 
import matplotlib.pyplot as plt 
 
# X shape (60,000 28x28), y shape (10,000, ) 
(x_train, _), (x_test, y_test) = mnist.load_data() 
 
# 数据预处理 
x_train = x_train.astype('float32') / 255. # minmax_normalized 
x_test = x_test.astype('float32') / 255. # minmax_normalized 
x_train = x_train.reshape((x_train.shape[0], -1)) 
x_test = x_test.reshape((x_test.shape[0], -1)) 
print(x_train.shape) 
print(x_test.shape) 
 
# 压缩特征维度至2维 
encoding_dim = 2 
 
# this is our input placeholder 
input_img = Input(shape=(784,)) 
 
# 编码层 
encoded = Dense(128, activation='relu')(input_img) 
encoded = Dense(64, activation='relu')(encoded) 
encoded = Dense(10, activation='relu')(encoded) 
encoder_output = Dense(encoding_dim)(encoded) 
 
# 解码层 
decoded = Dense(10, activation='relu')(encoder_output) 
decoded = Dense(64, activation='relu')(decoded) 
decoded = Dense(128, activation='relu')(decoded) 
decoded = Dense(784, activation='tanh')(decoded) 
 
# 构建自编码模型 
autoencoder = Model(inputs=input_img, outputs=decoded) 
 
# 构建编码模型 
encoder = Model(inputs=input_img, outputs=encoder_output) 
 
# compile autoencoder 
autoencoder.compile(optimizer='adam', loss='mse') 
 
autoencoder.summary()
encoder.summary()
 
# training 
autoencoder.fit(x_train, x_train, epochs=10, batch_size=256, shuffle=True) 
 
# plotting 
encoded_imgs = encoder.predict(x_test) 
 
plt.scatter(encoded_imgs[:, 0], encoded_imgs[:, 1], c=y_test,s=3) 
plt.colorbar() 
plt.show() 
 
decoded_imgs = autoencoder.predict(x_test)
# use Matplotlib (don't ask)
import matplotlib.pyplot as plt
 
n = 10 # how many digits we will display
plt.figure(figsize=(20, 4))
for i in range(n):
 # display original
 ax = plt.subplot(2, n, i + 1)
 plt.imshow(x_test[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
 
 # display reconstruction
 ax = plt.subplot(2, n, i + 1 + n)
 plt.imshow(decoded_imgs[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

运行结果:

Keras搭建自编码器操作

3、卷积自编码器

卷积自编码器的编码器部分由卷积层和MaxPooling层构成,MaxPooling负责空域下采样。而解码器由卷积层和上采样层构成。

from keras.layers import Input, Dense, Convolution2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras.datasets import mnist
import numpy as np
 
(x_train, _), (x_test, _) = mnist.load_data()
 
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
print('---> x_train shape: ', x_train.shape)
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))
print('---> xtrain shape: ', x_train.shape)
print('---> x_test shape: ', x_test.shape)
input_img = Input(shape=(28, 28, 1))
 
x = Convolution2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
 
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Convolution2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Convolution2D(1, (3, 3), activation='sigmoid', padding='same')(x)
 
autoencoder = Model(inputs=input_img, outputs=decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
 
# 打开一个终端并启动TensorBoard,终端中输入 tensorboard --logdir=/autoencoder
autoencoder.fit(x_train, x_train, epochs=10, batch_size=256,
  shuffle=True, validation_data=(x_test, x_test))
 
decoded_imgs = autoencoder.predict(x_test)
import matplotlib.pyplot as plt
decoded_imgs = autoencoder.predict(x_test)
 
n = 10
plt.figure(figsize=(20, 4))
for i in range(1, n+1):
 # display original
 ax = plt.subplot(2, n, i)
 plt.imshow(x_test[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
 
 # display reconstruction
 ax = plt.subplot(2, n, i + n)
 plt.imshow(decoded_imgs[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

训练结果展示:

Keras搭建自编码器操作

以上这篇Keras搭建自编码器操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python连接MySQL、MongoDB、Redis、memcache等数据库的方法
Nov 15 Python
python编程培训 python培训靠谱吗
Jan 17 Python
Django中如何防范CSRF跨站点请求伪造攻击的实现
Apr 28 Python
对Python3之方法的覆盖与super函数详解
Jun 26 Python
python或C++读取指定文件夹下的所有图片
Aug 31 Python
Python django框架输入汉字,数字,字符生成二维码实现详解
Sep 24 Python
Pycharm+Python+PyQt5使用详解
Sep 25 Python
Python爬取365好书中小说代码实例
Feb 28 Python
用Python开发app后端有优势吗
Jun 29 Python
Python pip安装第三方库实现过程解析
Jul 09 Python
python 模拟登陆163邮箱
Dec 15 Python
Python多线程实用方法以及共享变量资源竞争问题
Apr 12 Python
python 识别登录验证码图片功能的实现代码(完整代码)
Jul 03 #Python
python图片验证码识别最新模块muggle_ocr的示例代码
Jul 03 #Python
keras topN显示,自编写代码案例
Jul 03 #Python
python如何使用代码运行助手
Jul 03 #Python
Python 3.10 的首个 PEP 诞生,内置类型 zip() 迎来新特性(推荐)
Jul 03 #Python
python3 简单实现组合设计模式
Jul 02 #Python
Django Session和Cookie分别实现记住用户登录状态操作
Jul 02 #Python
You might like
如何提高MYSQL数据库的查询统计速度 select 索引应用
2007/04/11 PHP
php中的注释、变量、数组、常量、函数应用介绍
2012/11/16 PHP
php实现的支持imagemagick及gd库两种处理的缩略图生成类
2014/09/23 PHP
PHP计算日期相差天数实例分析
2016/02/23 PHP
js jquery验证银行卡号信息正则学习
2013/01/21 Javascript
jQuery实现带滚动线条导航效果的方法
2015/01/30 Javascript
实例讲解JavaScript的Backbone.js框架中的View视图
2016/05/05 Javascript
浅谈在vue项目中如何定义全局变量和全局函数
2017/10/24 Javascript
解决Jstree 选中父节点时被禁用的子节点也会选中的问题
2017/12/27 Javascript
详解vue-meta如何让你更优雅的管理头部标签
2018/01/18 Javascript
微信小程序支付功能 php后台对接完整代码分享
2018/06/12 Javascript
jQuery实现参数自定义的文字跑马灯效果
2018/08/15 jQuery
使用JS判断页面是首次被加载还是刷新
2019/05/26 Javascript
vue实现随机验证码功能(完整代码)
2019/12/10 Javascript
[04:16]完美世界DOTA2联赛PWL S2 集锦第一期
2020/11/23 DOTA
[01:09:13]DOTA2-DPC中国联赛 正赛 CDEC vs XG BO3 第三场 1月19日
2021/03/11 DOTA
python读取html中指定元素生成excle文件示例
2014/04/03 Python
Python Property属性的2种用法
2015/06/21 Python
python实现Decorator模式实例代码
2018/02/09 Python
python编写弹球游戏的实现代码
2018/03/12 Python
对python 多个分隔符split 的实例详解
2018/12/20 Python
Django Rest framework解析器和渲染器详解
2019/07/25 Python
Python  Django 母版和继承解析
2019/08/09 Python
python正则表达式的懒惰匹配和贪婪匹配说明
2020/07/13 Python
如何利用python之wxpy模块玩转微信
2020/08/17 Python
详解selenium + chromedriver 被反爬的解决方法
2020/10/28 Python
基于html5 DeviceOrientation 实现微信摇一摇功能
2015/09/25 HTML / CSS
html5实现输入框fixed定位在屏幕最底部兼容性
2020/07/03 HTML / CSS
手工制作的意大利礼服鞋:Ace Marks
2018/12/15 全球购物
美国环保妈妈、儿童和婴儿用品购物网站:The Tot
2019/11/24 全球购物
如何写好优秀的创业计划书
2014/01/30 职场文书
冰淇淋开店创业计划书
2014/02/01 职场文书
新教师工作感言
2014/02/16 职场文书
《金孔雀轻轻跳》教学反思
2014/04/20 职场文书
二年级语文下册复习计划
2015/01/19 职场文书
nginx location中多个if里面proxy_pass的方法
2021/03/31 Servers