Python进程间通信 multiProcessing Queue队列实现详解


Posted in Python onSeptember 23, 2019

一、进程间通信

IPC(Inter-Process Communication)

IPC机制:实现进程之间通讯

管道:pipe 基于共享的内存空间

队列:pipe+锁的概念--->queue

二、队列(Queue)

2.1 概念-----multiProcess.Queue

创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。

Queue([maxsize])创建共享的进程队列。

参数 :maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。

底层队列使用管道和锁定实现。

2.2 Queue方法使用

2.2.1 q.get的使用:

是从队列里面取值并且把队列面的取出来的值删掉,没有参数的情况下就是是默认一直等着取值

就算是队列里面没有可取的值的时候,程序也不会结束,就会卡在哪里,一直等着

from multiprocessing import Queue
q = Queue() # 生成一个队列对象
# put方法是往队列里面放值
q.put('Cecilia陈')
q.put('xuchen')
q.put('喜陈')

# get方法是从队列里面取值
print(q.get())
print(q.get())
print(q.get())

q.put(5)
q.put(6)
print(q.get())

Cecilia陈

xuchen

喜陈

5

2.2.2 Queue(参数) +参数的使用:

Queue加参数以后,参数是数值

参数实几就表示实例化的这个Queue队列可以放几个值

当队列已经满的时候,再放值,程序会阻塞,但不会结束

from multiprocessing import Queue
q = Queue(3)
q.put('Cecilia陈')
q.put('xuchen')
q.put('喜陈')
print(q.full()) # 判断队列是否满了 返回的是True/False
q.put(2) # 当队列已经满的时候,再放值,程序会阻塞,但不会结束

True 队列已经满了

2.2.3 q.put(参数1,参数2,参数3,参数4):

q.put(self, obj, block=True, timeout=None)

self :put就相当于是Queue里的一个方法,这个时候q.put就相当于是队列对象q来调用对象的绑定方法,这个参数可以省略即可

obj:是我们需要往队列里面放的值

block=True :队列如果满了的话,再往队列里放值的话会等待,程序不会结束

timeout=None:是再block这个参数的基础上的,当block的值为真的时候,timeout是用来等待多少秒,如果再这个时间里,队列一直是满的,那么程序就会报错并结束(Queue.Full异常)

from multiprocessing import Queue
q = Queue(3)
q.put('zhao',block=True,timeout=2)
q.put('zhao',block=True,timeout=2)
q.put('zhao',block=True,timeout=2)
q.put('zhao',block=True,timeout=5) # 此时程序将对等待5秒以后报错了

2.2.4 q.get(参数1,参数2,参数3,参数4):

q.get(self,block=True, timeout=None)

self :get就相当于是Queue里的一个方法,这个时候q.get就相当于是队列对象q来调用对象的绑定方法,这个参数可以省略即可

block=True :从队列q对象里面取值,如果娶不到值的话,程序不会结束

timeout=None:是再block这个参数的基础上的,当block的值为真的时候,timeout是用来等待多少秒,如果再这个时间里,get取不到队列里面的值的话,那么程序就会报错并结束(queue.Empty异常)

from multiprocessing import Queue
q = Queue()
q.put('Cecilia陈')
print(q.get())
q.get(block=True,timeout=2) # 此时程序会等待2秒后,报错了,队列里面没有值了

2.2.5 block=False:

如果block的值是False的话,那么put方法再队列是满的情况下,不会等待阻塞,程序直接报错(Queue.Full异常)结束

如果block的值是False的话,那么get方法再队列里面没有值的情况下,再去取的时候,不会等待阻塞,程序直接报错(queue.Empty异常)结束

1.put()的block=False

from multiprocessing import Queue
q = Queue(2)
q.put('Cecilia陈')
q.put('喜陈')
print(q.full())
q.put('xichen',block=False) # 队列已经满了,我不等待了,直接报错

2.get()的block=Flase

from multiprocessing import Queue
q = Queue(2)
q.put('Cecilia陈')
q.put('喜陈')
print(q.get())
print(q.get())
print(q.get(block=False)) # 队列已经没有值了,我不等待了,直接报错

2.2.6 put_nowait()/get_nowait()

1.put_nowait() 相当于bolok=False,队列满的时候,再放值的时候,程序不等待,不阻塞,直接报错

from multiprocessing import Queue
q = Queue(2)
q.put('Cecilia陈')
q.put('喜陈')
print(q.full())

q.put_nowait('xichen') # 程序不等待,不阻塞,直接报错

2.get_nowait() 相当于bolok=False,当队列里没有值的时候,再取值的时候,程序不等待,不阻塞,程序直接报错

from multiprocessing import Queue
q = Queue(2)
q.put('Cecilia陈')
q.put('喜陈')
print(q.get())
print(q.get())
print(q.full())
q.get_nowait()# 再取值的时候,程序不等待,不阻塞,程序直接报错

三、代码实例

3.1 单看队列的存取数据用法

这个例子还没有加入进程通信,只是先来看看队列为我们提供的方法,以及这些方法的使用和现象。

'''
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
'''

from multiprocessing import Queue
q=Queue(3)

#put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
# q.put(3)  # 如果队列已经满了,程序就会停在这里,等待数据被别人取走,再将数据放入队列。
      # 如果队列中的数据一直不被取走,程序就会永远停在这里。
try:
  q.put_nowait(3) # 可以使用put_nowait,如果队列满了不会阻塞,但是会因为队列满了而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。
  print('队列已经满了')

# 因此,我们再放入数据之前,可以先看一下队列的状态,如果已经满了,就不继续put了。
print(q.full()) #满了
print(q.get())
print(q.get())
print(q.get())
# print(q.get()) # 同put方法一样,如果队列已经空了,那么继续取就会出现阻塞。
try:
  q.get_nowait(3) # 可以使用get_nowait,如果队列满了不会阻塞,但是会因为没取到值而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去。
  print('队列已经空了')

print(q.empty()) #空了

3.2 子进程向父进程发送数据

这是一个queue的简单应用,使用队列q对象调用get函数来取得队列中最先进入的数据。

from multiprocessing import Process, Queue
def f(q,name,age):
  q.put(name,age) #调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据。
if __name__ == '__main__':
  q = Queue() #创建一个Queue对象
  p = Process(target=f, args=(q,'Cecilia陈',18)) #创建一个进程
  p.start()
  print(q.get())
  p.join()

['Cecilia陈', 18]

四、生产者消费者模型

生产者: 生产数据的任务

消费者: 处理数据的任务

生产者--队列(盆)-->消费者

生产者可以不停的生产,达到了自己最大的生产效率,消费者可以不停的消费,也达到了自己最大的消费效率.

生产者消费者模型大大提高了生产者生产的效率和消费者消费的效率.

补充: queue不适合传大文件,通产传一些消息.

在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度。

4.1 为什么要使用生产者和消费者模型

在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发当中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个问题于是引入了生产者和消费者模式。

4.2 什么是生产者消费者模型

生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。

4.3 基于Queue队列实现的生产者消费者模型

from multiprocessing import Queue,Process
# 生产者
def producer(q,name,food):
  for i in range(3):
    print(f'{name}生产了{food}{i}')
    res = f'{food}{i}'
    q.put(res)
# 消费者
def consumer(q,name):
  while True:
    res = q.get(timeout=5)
    print(f'{name}吃了{res}')
if __name__ == '__main__':
  q = Queue() # 为的是让生产者和消费者使用同一个队列,使用同一个队列进行通讯
  p1 = Process(target=producer,args=(q,'Cecilia陈','巧克力'))
  c1 = Process(target=consumer,args=(q,'Tom'))
  p1.start()
  c1.start()

此时的问题是主进程永远不会结束,原因是:生产者p在生产完后就结束了,但是消费者c在取空了q之后,则一直处于死循环中且卡在q.get()这一步。

解决方式无非是让生产者在生产完毕后,往队列中再发一个结束信号,这样消费者在接收到结束信号后就可以break出死循环。

4.4 改良版----生产者消费者模型

注意:结束信号None,不一定要由生产者发,主进程里同样可以发,但主进程需要等生产者结束后才应该发送该信号

from multiprocessing import Queue,Process
def producer(q,name,food):
  for i in range(3):
    print(f'{name}生产了{food}{i}')
    res = f'{food}{i}'
    q.put(res)
  q.put(None) # 当生产者结束生产的的时候,我们再队列的最后再做一个表示,告诉消费者,生产者已经不生产了,让消费者不要再去队列里拿东西了
def consumer(q,name):
  while True:
    res = q.get(timeout=5)
    if res == None:break # 判断队列拿出的是不是生产者放的结束生产的标识,如果是则不取,直接退出,结束程序
    print(f'{name}吃了{res}')
if __name__ == '__main__':
  q = Queue() # 为的是让生产者和消费者使用同一个队列,使用同一个队列进行通讯
  p1 = Process(target=producer,args=(q,'Cecilia陈','巧克力'))
  c1 = Process(target=consumer,args=(q,'Tom'))
  p1.start()
  c1.start()

4.5 主进程在生产者生产结束以后,发送结束信号

使用这个方法的话,是很low的,有几个消费者就要在主进程中向队列中put几个结束信号

from multiprocessing import Queue,Process
import time,random

def producer(q,name,food):
  for i in range(3):
    print(f'{name}生产了{food}{i}')
    time.sleep((random.randint(1,3)))
    res = f'{food}{i}'
    q.put(res)
  # q.put(None) # 当生产者结束生产的的时候,我们再队列的最后再做一个表示,告诉消费者,生产者已经不生产了,让消费者不要再去队列里拿东西了



def consumer(q,name):
  while True:
    res = q.get(timeout=5)
    if res == None:break # 判断队列拿出的是不是生产者放的结束生产的标识,如果是则不取,直接退出,结束程序
    time.sleep((random.randint(1, 3)))
    print(f'{name}吃了{res}')

if __name__ == '__main__':
  q = Queue() # 为的是让生产者和消费者使用同一个队列,使用同一个队列进行通讯
  # 多个生产者进程
  p1 = Process(target=producer,args=(q,'Cecilia陈','巧克力'))
  p2 = Process(target=producer,args=(q,'xichen','冰激凌'))
  p3 = Process(target=producer,args=(q,'喜陈','可乐'))
  # 多个消费者进程
  c1 = Process(target=consumer,args=(q,'Tom'))
  c2 = Process(target=consumer,args=(q,'jack'))


  # 告诉操作系统启动生产者进程
  p1.start()
  p2.start()
  p3.start()

  # 告诉操作系统启动消费者进程
  c1.start()
  c2.start()

  p1.join()
  p2.join()
  p3.join()

  q.put(None) # 几个消费者put几次
  q.put(None)

五、JoinableQueue方法

创建可连接的共享进程队列。这就像是一个Queue对象,但队列允许项目的使用者通知生产者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。

5.1 方法介绍

JoinableQueue的实例p除了与Queue对象相同的方法之外,还具有以下方法:

q.task_done():使用者使用此方法发出信号,表示q.get()返回的项目已经被处理。如果调用此方法的次数大于从队列中删除的项目数量,将引发ValueError异常。

q.join():生产者将使用此方法进行阻塞,直到队列中所有项目均被处理。阻塞将持续到为队列中的每个项目均调用q.task_done()方法为止。

5.2 joinableQueue队列实现生产者消费者模型

from multiprocessing import Queue,Process,JoinableQueue
import time,random

def producer(q,name,food):
  for i in range(3):
    print(f'{name}生产了{food}{i}')
    # time.sleep((random.randint(1,3)))
    res = f'{food}{i}'
    q.put(res)
  # q.put(None) # 当生产者结束生产的的时候,我们再队列的最后再做一个表示,告诉消费者,生产者已经不生产了,让消费者不要再去队列里拿东西了
  q.join()


def consumer(q,name):
  while True:
    res = q.get(timeout=5)
    # if res == None:break # 判断队列拿出的是不是生产者放的结束生产的标识,如果是则不取,直接退出,结束程序
    # time.sleep((random.randint(1, 3)))
    print(f'{name}吃了{res}')
    q.task_done()#向q.join()发送一次信号,证明一个数据已经被取走了


if __name__ == '__main__':
  q = JoinableQueue() # 为的是让生产者和消费者使用同一个队列,使用同一个队列进行通讯
  # 多个生产者进程
  p1 = Process(target=producer,args=(q,'Cecilia陈','巧克力'))
  p2 = Process(target=producer,args=(q,'xichen','冰激凌'))
  p3 = Process(target=producer,args=(q,'喜陈','可乐'))
  # 多个消费者进程
  c1 = Process(target=consumer,args=(q,'Tom'))
  c2 = Process(target=consumer,args=(q,'jack'))


  # 告诉操作系统启动生产者进程
  p1.start()
  p2.start()
  p3.start()

  # 把生产者设为守护进程
  c1.daemon = True
  c2.daemon = True
  # 告诉操作系统启动消费者进程
  c1.start()
  c2.start()

  p1.join()
  p2.join()
  p3.join() # 等待生产者生产完毕

  print('主进程')

  ### 分析
  # 生产者生产完毕--这是主进程最后一行代码结束--q.join()消费者已经取干净了,没有存在的意义了
  # 这是主进程最后一行代码结束,消费者已经取干净了,没有存在的意义了.守护进程的概念.

5.3 测试joinableQueue

from multiprocessing import Process,Queue,JoinableQueue
q = JoinableQueue()
q.put('zhao') # 放队列里一个任务
q.put('qian')
print(q.get())
q.task_done() # 完成了一次任务
print(q.get())
q.task_done() # 完成了一次任务
q.join() #计数器不为0的时候 阻塞等待计数器为0后通过

# 想象成一个计数器 :put +1  task_done -1

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现从订阅源下载图片的方法
Mar 11 Python
Python实现把json格式转换成文本或sql文件
Jul 10 Python
Python实现控制台进度条功能
Jan 04 Python
Python实现字典依据value排序
Feb 24 Python
django中的setting最佳配置小结
Nov 21 Python
解决python中画图时x,y轴名称出现中文乱码的问题
Jan 29 Python
Python中捕获键盘的方式详解
Mar 28 Python
Python3.5装饰器原理及应用实例详解
Apr 30 Python
Python序列化与反序列化pickle用法实例
Nov 11 Python
PyTorch加载预训练模型实例(pretrained)
Jan 17 Python
Django后端按照日期查询的方法教程
Feb 28 Python
基于python的matplotlib制作双Y轴图
Apr 20 Python
python程序中的线程操作 concurrent模块使用详解
Sep 23 #Python
Python3 pandas 操作列表实例详解
Sep 23 #Python
详解基于python-django框架的支付宝支付案例
Sep 23 #Python
如何利用Python开发一个简单的猜数字游戏
Sep 22 #Python
Python中关于浮点数的冷知识
Sep 22 #Python
Python安装及Pycharm安装使用教程图解
Sep 20 #Python
Python实现语音识别和语音合成功能
Sep 20 #Python
You might like
人大复印资料处理程序_输入篇
2006/10/09 PHP
PHP+Mysql基于事务处理实现转账功能的方法
2015/07/08 PHP
PHP定时任务获取微信access_token的方法
2016/10/10 PHP
Extjs gridpanel 出现横向滚动条问题的解决方法
2011/07/04 Javascript
JQuery通过Ajax提交表单并返回结果
2011/07/31 Javascript
对javascript的一点点认识总结《javascript高级程序设计》读书笔记
2011/11/30 Javascript
jquery自动将form表单封装成json的具体实现
2014/03/17 Javascript
Javascript基于对象三大特性(封装性、继承性、多态性)
2016/01/04 Javascript
AngularJS教程之MVC体系结构详解
2016/08/16 Javascript
KVM虚拟化技术之使用Qemu-kvm创建和管理虚拟机的方法
2016/10/05 Javascript
详解js中call与apply关键字的作用
2016/11/21 Javascript
Vuex之理解Mutations的用法实例
2017/04/19 Javascript
bootstrap multiselect 多选功能实现方法
2017/06/05 Javascript
javascript将url解析为json格式的两种方法
2017/08/18 Javascript
vue mint-ui学习笔记之picker的使用
2017/10/11 Javascript
JS写XSS cookie stealer来窃取密码的步骤详解
2017/11/20 Javascript
js正则相关知识点专题
2018/05/10 Javascript
OpenLayers3实现测量功能
2020/09/25 Javascript
[02:16]卖萌的僵尸 DOTA2神话信使飞僵小宝来袭
2014/03/24 DOTA
Python实现文件按照日期命名的方法
2015/07/09 Python
浅谈Python浅拷贝、深拷贝及引用机制
2016/12/15 Python
python3+PyQt5实现使用剪贴板做复制与粘帖示例
2017/01/24 Python
pandas 读取各种格式文件的方法
2018/06/22 Python
Python设计模式之解释器模式原理与用法实例分析
2019/01/10 Python
关于HTML5你必须知道的28个新特性,新技巧以及新技术
2012/05/28 HTML / CSS
详解HTML5中表单验证的8种方法介绍
2016/12/19 HTML / CSS
俄罗斯建筑和装饰材料在线商店:Stroilandia
2020/07/25 全球购物
什么时候用assert
2015/05/08 面试题
机电一体化专业应届生求职信
2013/11/27 职场文书
预备党员入党自我评价范文
2014/03/10 职场文书
家长写给老师的建议书
2014/03/13 职场文书
会计的岗位职责
2014/03/15 职场文书
四风问题班子对照检查材料
2014/09/27 职场文书
2014年学校体育工作总结
2014/12/08 职场文书
2016入党积极分子党校培训心得体会
2016/01/06 职场文书
详解Nginx的超时keeplive_timeout配置步骤
2022/05/25 Servers