Python实现语音识别和语音合成功能


Posted in Python onSeptember 20, 2019

声音的本质是震动,震动的本质是位移关于时间的函数,波形文件(.wav)中记录了不同采样时刻的位移。

通过傅里叶变换,可以将时间域的声音函数分解为一系列不同频率的正弦函数的叠加,通过频率谱线的特殊分布,建立音频内容和文本的对应关系,以此作为模型训练的基础。

案例:画出语音信号的波形和频率分布,(freq.wav数据地址)

# -*- encoding:utf-8 -*-
import numpy as np
import numpy.fft as nf
import scipy.io.wavfile as wf
import matplotlib.pyplot as plt
sample_rate, sigs = wf.read('../machine_learning_date/freq.wav')
print(sample_rate)   # 8000采样率
print(sigs.shape)  # (3251,)
sigs = sigs / (2 ** 15) # 归一化
times = np.arange(len(sigs)) / sample_rate
freqs = nf.fftfreq(sigs.size, 1 / sample_rate)
ffts = nf.fft(sigs)
pows = np.abs(ffts)
plt.figure('Audio')
plt.subplot(121)
plt.title('Time Domain')
plt.xlabel('Time', fontsize=12)
plt.ylabel('Signal', fontsize=12)
plt.tick_params(labelsize=10)
plt.grid(linestyle=':')
plt.plot(times, sigs, c='dodgerblue', label='Signal')
plt.legend()
plt.subplot(122)
plt.title('Frequency Domain')
plt.xlabel('Frequency', fontsize=12)
plt.ylabel('Power', fontsize=12)
plt.tick_params(labelsize=10)
plt.grid(linestyle=':')
plt.plot(freqs[freqs >= 0], pows[freqs >= 0], c='orangered', label='Power')
plt.legend()
plt.tight_layout()
plt.show()

Python实现语音识别和语音合成功能

语音识别

梅尔频率倒谱系数(MFCC)通过与声音内容密切相关的13个特殊频率所对应的能量分布,可以使用梅尔频率倒谱系数矩阵作为语音识别的特征。基于隐马尔科夫模型进行模式识别,找到测试样本最匹配的声音模型,从而识别语音内容。

MFCC

梅尔频率倒谱系数相关API:

import scipy.io.wavfile as wf
import python_speech_features as sf
sample_rate, sigs = wf.read('../data/freq.wav')
mfcc = sf.mfcc(sigs, sample_rate)

案例:画出MFCC矩阵:

python -m pip install python_speech_features
import scipy.io.wavfile as wf
import python_speech_features as sf
import matplotlib.pyplot as mp
sample_rate, sigs = wf.read(
  '../ml_data/speeches/training/banana/banana01.wav')
mfcc = sf.mfcc(sigs, sample_rate)
mp.matshow(mfcc.T, cmap='gist_rainbow')
mp.show()

Python实现语音识别和语音合成功能

隐马尔科夫模型

隐马尔科夫模型相关API:

import hmmlearn.hmm as hl
model = hl.GaussianHMM(n_components=4, covariance_type='diag', n_iter=1000)
# n_components: 用几个高斯分布函数拟合样本数据
# covariance_type: 相关矩阵的辅对角线进行相关性比较
# n_iter: 最大迭代上限
model.fit(mfccs) # 使用模型匹配测试mfcc矩阵的分值 score = model.score(test_mfccs)

案例:训练training文件夹下的音频,对testing文件夹下的音频文件做分类

1、读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple)。

2、把所有类别为apple的mfcc合并在一起,形成训练集。

| mfcc |

    |

| mfcc | apple |

| mfcc |

    |

.....

由上述训练集样本可以训练一个用于匹配apple的HMM。

3、训练7个HMM分别对应每个水果类别。 保存在列表中。

4、读取testing文件夹中的测试样本,整理测试样本

| mfcc | apple |

| mfcc | lime   |

5、针对每一个测试样本:

1、分别使用7个HMM模型,对测试样本计算score得分。

2、取7个模型中得分最高的模型所属类别作为预测类别。

import os
import numpy as np
import scipy.io.wavfile as wf
import python_speech_features as sf
import hmmlearn.hmm as hl
​
#1. 读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple)。
def search_file(directory):
  # 使传过来的directory匹配当前操作系统
  # {'apple':[url, url, url ... ], 'banana':[...]}  
  directory = os.path.normpath(directory)
  objects = {}
  # curdir:当前目录 
  # subdirs: 当前目录下的所有子目录
  # files: 当前目录下的所有文件名
  for curdir, subdirs, files in os.walk(directory):
    for file in files:
      if file.endswith('.wav'):
        label = curdir.split(os.path.sep)[-1]
        if label not in objects:
          objects[label] = []
        # 把路径添加到label对应的列表中
        path = os.path.join(curdir, file)
        objects[label].append(path)
  return objects
​
#读取训练集数据
train_samples = \
  search_file('../ml_data/speeches/training')
​
'''

2. 把所有类别为apple的mfcc合并在一起,形成训练集。

| mfcc |    |
  | mfcc | apple |
  | mfcc |    |
  .....
  由上述训练集样本可以训练一个用于匹配apple的HMM。
'''
train_x, train_y = [], []
# 遍历7次 apple/banana/...
for label, filenames in train_samples.items():
  mfccs = np.array([])
  for filename in filenames:
    sample_rate, sigs = wf.read(filename)
    mfcc = sf.mfcc(sigs, sample_rate)
    if len(mfccs)==0:
      mfccs = mfcc
    else:
      mfccs = np.append(mfccs, mfcc, axis=0)
  train_x.append(mfccs)
  train_y.append(label)
'''
训练集:
  train_x train_y
  ----------------
  | mfcc |    |
  | mfcc | apple |
  | mfcc |    |
  ----------------
  | mfcc |    |
  | mfcc | banana |
  | mfcc |    |
  -----------------
  | mfcc |    |
  | mfcc | lime  |
  | mfcc |    |
  -----------------
'''
# {'apple':object, 'banana':object ...}
models = {}
for mfccs, label in zip(train_x, train_y):
  model = hl.GaussianHMM(n_components=4, 
    covariance_type='diag', n_iter=1000)
  models[label] = model.fit(mfccs)
'''

4. 读取testing文件夹中的测试样本,针对每一个测试样本:

   1. 分别使用7个HMM模型,对测试样本计算score得分。

   2. 取7个模型中得分最高的模型所属类别作为预测类别。

'''
#读取测试集数据
test_samples = \
  search_file('../ml_data/speeches/testing')
​
test_x, test_y = [], []
for label, filenames in test_samples.items():
  mfccs = np.array([])
  for filename in filenames:
    sample_rate, sigs = wf.read(filename)
    mfcc = sf.mfcc(sigs, sample_rate)
    if len(mfccs)==0:
      mfccs = mfcc
    else:
      mfccs = np.append(mfccs, mfcc, axis=0)
  test_x.append(mfccs)
  test_y.append(label)
​
'''测试集:
  test_x test_y
  -----------------
  | mfcc | apple |
  -----------------
  | mfcc | banana |
  -----------------
  | mfcc | lime  |
  -----------------
'''
pred_test_y = []
for mfccs in test_x:
# 判断mfccs与哪一个HMM模型更加匹配
best_score, best_label = None, None
for label, model in models.items():
score = model.score(mfccs)
if (best_score is None) or (best_score<score):
best_score = score
best_label = label
pred_test_y.append(best_label)
​
print(test_y)
print(pred_test_y)

声音合成

根据需求获取某个声音的模型频域数据,根据业务需要可以修改模型数据,逆向生成时域数据,完成声音的合成。

案例:

import json
import numpy as np
import scipy.io.wavfile as wf
with open('../data/12.json', 'r') as f:
  freqs = json.loads(f.read())
tones = [
  ('G5', 1.5),
  ('A5', 0.5),
  ('G5', 1.5),
  ('E5', 0.5),
  ('D5', 0.5),
  ('E5', 0.25),
  ('D5', 0.25),
  ('C5', 0.5),
  ('A4', 0.5),
  ('C5', 0.75)]
sample_rate = 44100
music = np.empty(shape=1)
for tone, duration in tones:
  times = np.linspace(0, duration, duration * sample_rate)
  sound = np.sin(2 * np.pi * freqs[tone] * times)
  music = np.append(music, sound)
music *= 2 ** 15
music = music.astype(np.int16)
wf.write('../data/music.wav', sample_rate, music)

总结

以上所述是小编给大家介绍的Python实现语音识别和语音合成功能,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

Python 相关文章推荐
Python实现的数据结构与算法之链表详解
Apr 22 Python
Python使用django搭建web开发环境
Jun 09 Python
python实现简单遗传算法
Mar 19 Python
Python实现识别图片内容的方法分析
Jul 11 Python
Pandas Shift函数的基础入门学习笔记
Nov 16 Python
set在python里的含义和用法
Jun 24 Python
Django如何实现网站注册用户邮箱验证功能
Aug 14 Python
python基础 range的用法解析
Aug 23 Python
关于sys.stdout和print的区别详解
Dec 05 Python
浅析Python数字类型和字符串类型的内置方法
Dec 22 Python
python删除指定列或多列单个或多个内容实例
Jun 28 Python
matplotlib制作雷达图报错ValueError的实现
Jan 05 Python
使用python将最新的测试报告以附件的形式发到指定邮箱
Sep 20 #Python
Python使用__new__()方法为对象分配内存及返回对象的引用示例
Sep 20 #Python
Python 类方法和实例方法(@classmethod),静态方法(@staticmethod)原理与用法分析
Sep 20 #Python
Python 类属性与实例属性,类对象与实例对象用法分析
Sep 20 #Python
使用python脚本自动创建pip.ini配置文件代码实例
Sep 20 #Python
使用Python给头像戴上圣诞帽的图像操作过程解析
Sep 20 #Python
Python 函数用法简单示例【定义、参数、返回值、函数嵌套】
Sep 20 #Python
You might like
《PHP边学边教》(04.编写简易的通讯录――视频教程1)
2006/12/13 PHP
PHP高自定义性安全验证码代码
2011/11/27 PHP
php curl post 时出现的问题解决
2014/01/30 PHP
php中3种方法删除字符串中间的空格
2014/03/10 PHP
PHP使用array_multisort对多个数组或多维数组进行排序
2014/12/16 PHP
WordPress的文章自动添加关键词及关键词的SEO优化
2016/03/01 PHP
php闭包中使用use声明变量的作用域实例分析
2018/08/09 PHP
jQuery 常见开发使用技巧总结
2009/12/26 Javascript
actionscript与javascript的区别
2011/05/25 Javascript
Js 去掉字符串中的空格(实现代码)
2013/11/19 Javascript
Jqgrid表格随窗口大小改变而改变的简单实例
2013/12/28 Javascript
用jquery的方法制作一个简单的导航栏
2014/06/23 Javascript
javascript框架设计读书笔记之模块加载系统
2014/12/02 Javascript
jquery实现仿新浪微博评论滚动效果
2015/08/06 Javascript
js改变透明度实现轮播图的算法
2020/08/24 Javascript
js正则表达式最长匹配(贪婪匹配)和最短匹配(懒惰匹配)用法分析
2016/12/27 Javascript
js如何获取网页所有图片
2017/05/12 Javascript
浅谈Vue2.0父子组件间事件派发机制
2018/01/08 Javascript
vue的diff算法知识点总结
2018/03/29 Javascript
JavaScript实现连连看连线算法
2019/01/05 Javascript
jQuery AJAX与jQuery事件的分析讲解
2019/02/18 jQuery
vue + axios get下载文件功能
2019/09/25 Javascript
Python中用Decorator来简化元编程的教程
2015/04/13 Python
使用Python设置tmpfs来加速项目的教程
2015/04/17 Python
深度辨析Python的eval()与exec()的方法
2019/03/26 Python
python 计算平均平方误差(MSE)的实例
2019/06/29 Python
Python3+PyInstall+Sciter解决报错缺少dll、html等文件问题
2019/07/15 Python
解决导入django_filters不成功问题No module named 'django_filter'
2020/07/15 Python
HTML5通用接口详解
2016/06/12 HTML / CSS
工程项目建议书范文
2014/03/12 职场文书
采购求职信
2014/03/17 职场文书
2014年宣传部个人工作总结
2014/12/06 职场文书
晶体管来复再生式二管收音机
2021/04/22 无线电
vue-cli4.5.x快速搭建项目
2021/05/30 Vue.js
python通过新建环境安装tfx的问题
2022/05/20 Python
MySQL一劳永逸永久支持输入中文的方法实例
2022/08/05 MySQL