python对json的相关操作实例详解


Posted in Python onJanuary 04, 2017

本文实例分析了python对json的相关操作。分享给大家供大家参考,具体如下:

什么是json:

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999的一个子集。JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, C#, Java, JavaScript, Perl, Python等)。这些特性使JSON成为理想的数据交换语言。

JSON建构于两种结构:

“名称/值”对的集合(A collection of name/value pairs)。不同的语言中,它被理解为对象(object),纪录(record),结构(struct),字典(dictionary),哈希表(hash table),有键列表(keyed list),或者关联数组 (associative array)。

值的有序列表(An ordered list of values)。在大部分语言中,它被理解为数组(array)。

这些都是常见的数据结构。事实上大部分现代计算机语言都以某种形式支持它们。这使得一种数据格式在同样基于这些结构的编程语言之间交换成为可能。

json官方说明参见:http://json.org/

Python操作json的标准api库参考:http://docs.python.org/library/json.html

对简单数据类型的encoding 和 decoding:

使用简单的json.dumps方法对简单数据类型进行编码,例如:

import json
obj = [[1,2,3],123,123.123,'abc',{'key1':(1,2,3),'key2':(4,5,6)}]
encodedjson = json.dumps(obj)
print repr(obj)
print encodedjson

输出:

[[1, 2, 3], 123, 123.123, 'abc', {'key2': (4, 5, 6), 'key1': (1, 2, 3)}]
[[1, 2, 3], 123, 123.123, "abc", {"key2": [4, 5, 6], "key1": [1, 2, 3]}]

通过输出的结果可以看出,简单类型通过encode之后跟其原始的repr()输出结果非常相似,但是有些数据类型进行了改变,例如上例中的元组则转换为了列表。在json的编码过程中,会存在从python原始类型向json类型的转化过程,具体的转化对照如下:

python对json的相关操作实例详解

json.dumps()方法返回了一个str对象encodedjson,我们接下来在对encodedjson进行decode,得到原始数据,需要使用的json.loads()函数:

decodejson = json.loads(encodedjson)
print type(decodejson)
print decodejson[4]['key1']
print decodejson

输出:

<type 'list'>
[1, 2, 3]
[[1, 2, 3], 123, 123.123, u'abc', {u'key2': [4, 5, 6], u'key1': [1, 2, 3]}]

loads方法返回了原始的对象,但是仍然发生了一些数据类型的转化。比如,上例中‘abc'转化为了unicode类型。从json到python的类型转化对照如下:

python对json的相关操作实例详解

json.dumps方法提供了很多好用的参数可供选择,比较常用的有sort_keys(对dict对象进行排序,我们知道默认dict是无序存放的),separators,indent等参数。

排序功能使得存储的数据更加有利于观察,也使得对json输出的对象进行比较,例如:

data1 = {'b':789,'c':456,'a':123}
data2 = {'a':123,'b':789,'c':456}
d1 = json.dumps(data1,sort_keys=True)
d2 = json.dumps(data2)
d3 = json.dumps(data2,sort_keys=True)
print d1
print d2
print d3
print d1==d2
print d1==d3

输出:

{"a": 123, "b": 789, "c": 456}
{"a": 123, "c": 456, "b": 789}
{"a": 123, "b": 789, "c": 456}
False
True

上例中,本来data1和data2数据应该是一样的,但是由于dict存储的无序特性,造成两者无法比较。因此两者可以通过排序后的结果进行存储就避免了数据比较不一致的情况发生,但是排序后再进行存储,系统必定要多做一些事情,也一定会因此造成一定的性能消耗,所以适当排序是很重要的。

indent参数是缩进的意思,它可以使得数据存储的格式变得更加优雅。

data1 = {'b':789,'c':456,'a':123}
d1 = json.dumps(data1,sort_keys=True,indent=4)
print d1

输出:

{
 "a": 123,
 "b": 789,
 "c": 456
}

输出的数据被格式化之后,变得可读性更强,但是却是通过增加一些冗余的空白格来进行填充的。json主要是作为一种数据通信的格式存在的,而网络通信是很在乎数据的大小的,无用的空格会占据很多通信带宽,所以适当时候也要对数据进行压缩。separator参数可以起到这样的作用,该参数传递是一个元组,包含分割对象的字符串。

print 'DATA:', repr(data)
print 'repr(data)  :', len(repr(data))
print 'dumps(data)  :', len(json.dumps(data))
print 'dumps(data, indent=2) :', len(json.dumps(data, indent=4))
print 'dumps(data, separators):', len(json.dumps(data, separators=(',',':')))

输出:

DATA: {'a': 123, 'c': 456, 'b': 789}
repr(data)  : 30
dumps(data)  : 30
dumps(data, indent=2) : 46
dumps(data, separators): 25

通过移除多余的空白符,达到了压缩数据的目的,而且效果还是比较明显的。

另一个比较有用的dumps参数是skipkeys,默认为False。 dumps方法存储dict对象时,key必须是str类型,如果出现了其他类型的话,那么会产生TypeError异常,如果开启该参数,设为True的话,则会比较优雅的过度。

data = {'b':789,'c':456,(1,2):123}
print json.dumps(data,skipkeys=True)

输出:

{"c": 456, "b": 789}

处理自己的数据类型

json模块不仅可以处理普通的python内置类型,也可以处理我们自定义的数据类型,而往往处理自定义的对象是很常用的。

首先,我们定义一个类Person。

class Person(object):
 def __init__(self,name,age):
 self.name = name
 self.age = age
 def __repr__(self):
 return 'Person Object name : %s , age : %d' % (self.name,self.age)
if __name__ == '__main__':
 p = Person('Peter',22)
 print p

如果直接通过json.dumps方法对Person的实例进行处理的话,会报错,因为json无法支持这样的自动转化。通过上面所提到的json和python的类型转化对照表,可以发现,object类型是和dict相关联的,所以我们需要把我们自定义的类型转化为dict,然后再进行处理。这里,有两种方法可以使用。

方法一:自己写转化函数

'''
Created on 2011-12-14
@author: Peter
'''
import Person
import json
p = Person.Person('Peter',22)
def object2dict(obj):
 #convert object to a dict
 d = {}
 d['__class__'] = obj.__class__.__name__
 d['__module__'] = obj.__module__
 d.update(obj.__dict__)
 return d
def dict2object(d):
 #convert dict to object
 if'__class__' in d:
 class_name = d.pop('__class__')
 module_name = d.pop('__module__')
 module = __import__(module_name)
 class_ = getattr(module,class_name)
 args = dict((key.encode('ascii'), value) for key, value in d.items()) #get args
 inst = class_(**args) #create new instance
 else:
 inst = d
 return inst
d = object2dict(p)
print d
#{'age': 22, '__module__': 'Person', '__class__': 'Person', 'name': 'Peter'}
o = dict2object(d)
print type(o),o
#<class 'Person.Person'> Person Object name : Peter , age : 22
dump = json.dumps(p,default=object2dict)
print dump
#{"age": 22, "__module__": "Person", "__class__": "Person", "name": "Peter"}
load = json.loads(dump,object_hook = dict2object)
print load
#Person Object name : Peter , age : 22

上面代码已经写的很清楚了,实质就是自定义object类型和dict类型进行转化。object2dict函数将对象模块名、类名以及__dict__存储在dict对象里,并返回。dict2object函数则是反解出模块名、类名、参数,创建新的对象并返回。在json.dumps 方法中增加default参数,该参数表示在转化过程中调用指定的函数,同样在decode过程中json.loads方法增加object_hook,指定转化函数。

方法二:继承JSONEncoder和JSONDecoder类,覆写相关方法

JSONEncoder类负责编码,主要是通过其default函数进行转化,我们可以override该方法。同理对于JSONDecoder。

'''
Created on 2011-12-14
@author: Peter
'''
import Person
import json
p = Person.Person('Peter',22)
class MyEncoder(json.JSONEncoder):
 def default(self,obj):
 #convert object to a dict
 d = {}
 d['__class__'] = obj.__class__.__name__
 d['__module__'] = obj.__module__
 d.update(obj.__dict__)
 return d
class MyDecoder(json.JSONDecoder):
 def __init__(self):
 json.JSONDecoder.__init__(self,object_hook=self.dict2object)
 def dict2object(self,d):
 #convert dict to object
 if'__class__' in d:
  class_name = d.pop('__class__')
  module_name = d.pop('__module__')
  module = __import__(module_name)
  class_ = getattr(module,class_name)
  args = dict((key.encode('ascii'), value) for key, value in d.items()) #get args
  inst = class_(**args) #create new instance
 else:
  inst = d
 return inst
d = MyEncoder().encode(p)
o = MyDecoder().decode(d)
print d
print type(o), o

对于JSONDecoder类方法,稍微有点不同,但是改写起来也不是很麻烦。看代码应该就比较清楚了。

 

Python 相关文章推荐
kNN算法python实现和简单数字识别的方法
Nov 18 Python
python实现字符串和日期相互转换的方法
May 13 Python
Python爬虫实现百度图片自动下载
Feb 04 Python
python实现音乐下载的统计
Jun 20 Python
python爬取指定微信公众号文章
Dec 20 Python
Python分析彩票记录并预测中奖号码过程详解
Jul 09 Python
python 进程间数据共享multiProcess.Manger实现解析
Sep 23 Python
python自动化测试之异常及日志操作实例分析
Nov 09 Python
python 实现线程之间的通信示例
Feb 14 Python
Python内置异常类型全面汇总
May 28 Python
给Django Admin添加验证码和多次登录尝试限制的实现
Jul 26 Python
Python基于pyjnius库实现访问java类
Jul 31 Python
python的random模块及加权随机算法的python实现方法
Jan 04 #Python
python 实现红包随机生成算法的简单实例
Jan 04 #Python
Python 模板引擎的注入问题分析
Jan 01 #Python
python getopt详解及简单实例
Dec 30 #Python
浅谈编码,解码,乱码的问题
Dec 30 #Python
Python实现将数据库一键导出为Excel表格的实例
Dec 30 #Python
python脚本实现数据导出excel格式的简单方法(推荐)
Dec 30 #Python
You might like
php线性表的入栈与出栈实例分析
2015/06/12 PHP
PHP实现的62进制转10进制,10进制转62进制函数示例
2019/06/06 PHP
Prototype使用指南之base.js
2007/01/10 Javascript
JavaScript 撑出页面文字换行
2009/06/15 Javascript
jQuery 操作下拉列表框实现代码
2010/02/22 Javascript
JavaScript在多浏览器下for循环的使用方法
2012/11/07 Javascript
JavaScript对Cookie进行读写操作实例
2015/07/25 Javascript
HTML5之WebSocket入门3 -通信模型socket.io
2015/08/21 Javascript
javascript作用域链(Scope Chain)用法实例解析
2015/11/30 Javascript
详解JavaScript正则表达式之RegExp对象
2015/12/13 Javascript
详解Angular中$cacheFactory缓存的使用
2016/08/19 Javascript
JavaScript实现前端分页控件
2017/04/19 Javascript
JavaScript定时器setTimeout()和setInterval()详解
2017/08/18 Javascript
Javacript中自定义的map.js  的方法
2017/11/26 Javascript
详解webpack require.ensure与require AMD的区别
2017/12/13 Javascript
详解NODEJS的http实现
2018/01/04 NodeJs
Node.js中的child_process模块详解
2018/06/08 Javascript
利用JS动态生成隔行换色HTML表格的两种方法
2018/10/09 Javascript
说说如何利用 Node.js 代理解决跨域问题
2019/04/22 Javascript
js cavans实现静态滚动弹幕
2020/05/21 Javascript
H5 js点击按钮复制文本到粘贴板
2020/11/19 Javascript
利用Python绘制数据的瀑布图的教程
2015/04/07 Python
python通过socket查询whois的方法
2015/07/18 Python
python验证码识别实例代码
2018/02/03 Python
Python的控制结构之For、While、If循环问题
2020/06/30 Python
如何设置Java的运行环境
2013/04/05 面试题
上海微创软件面试题
2012/06/14 面试题
优秀的2014年两会精神解读
2014/03/17 职场文书
搞笑车尾标语
2014/06/23 职场文书
动物科学专业求职信
2014/07/27 职场文书
银行员工考核评语
2014/12/31 职场文书
病危通知单
2015/04/17 职场文书
导游词之平津战役纪念馆
2019/11/04 职场文书
css display table 自适应高度、宽度问题的解决
2021/05/07 HTML / CSS
Django+Nginx+uWSGI 定时任务的实现方法
2022/01/22 Python
Vue3实现简易音乐播放器组件
2022/08/14 Vue.js