手把手教你使用TensorFlow2实现RNN


Posted in Python onJuly 15, 2021
目录
  • 概述
  • 权重共享
  • 计算过程:
  • 案例
    • 数据集
    • RNN 层
    • 获取数据
  • 完整代码

 

概述

RNN (Recurrent Netural Network) 是用于处理序列数据的神经网络. 所谓序列数据, 即前面的输入和后面的输入有一定的联系.

手把手教你使用TensorFlow2实现RNN

 

权重共享

传统神经网络:

手把手教你使用TensorFlow2实现RNN

RNN:

手把手教你使用TensorFlow2实现RNN

RNN 的权重共享和 CNN 的权重共享类似, 不同时刻共享一个权重, 大大减少了参数数量.

 

计算过程:

手把手教你使用TensorFlow2实现RNN

计算状态 (State)

手把手教你使用TensorFlow2实现RNN

计算输出:

手把手教你使用TensorFlow2实现RNN

 

案例

 

数据集

IBIM 数据集包含了来自互联网的 50000 条关于电影的评论, 分为正面评价和负面评价.

 

RNN 层

class RNN(tf.keras.Model):

    def __init__(self, units):
        super(RNN, self).__init__()

        # 初始化 [b, 64] (b 表示 batch_size)
        self.state0 = [tf.zeros([batch_size, units])]
        self.state1 = [tf.zeros([batch_size, units])]

        # [b, 80] => [b, 80, 100]
        self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)

        self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
        self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)

        # [b, 80, 100] => [b, 64] => [b, 1]
        self.out_layer = tf.keras.layers.Dense(1)

    def call(self, inputs, training=None):
        """

        :param inputs: [b, 80]
        :param training:
        :return:
        """

        state0 = self.state0
        state1 = self.state1

        x = self.embedding(inputs)

        for word in tf.unstack(x, axis=1):
            out0, state0 = self.rnn_cell0(word, state0, training=training)
            out1, state1 = self.rnn_cell1(out0, state1, training=training)

        # [b, 64] -> [b, 1]
        x = self.out_layer(out1)

        prob = tf.sigmoid(x)

        return prob

 

获取数据

def get_data():
    # 获取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)

    # 更改句子长度
    X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)
    X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)

    # 调试输出
    print(X_train.shape, y_train.shape)  # (25000, 80) (25000,)
    print(X_test.shape, y_test.shape)  # (25000, 80) (25000,)

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))
    train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))
    test_db = test_db.batch(batch_size, drop_remainder=True)

    return train_db, test_db

 

完整代码

import tensorflow as tf


class RNN(tf.keras.Model):

    def __init__(self, units):
        super(RNN, self).__init__()

        # 初始化 [b, 64]
        self.state0 = [tf.zeros([batch_size, units])]
        self.state1 = [tf.zeros([batch_size, units])]

        # [b, 80] => [b, 80, 100]
        self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)

        self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)
        self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)

        # [b, 80, 100] => [b, 64] => [b, 1]
        self.out_layer = tf.keras.layers.Dense(1)

    def call(self, inputs, training=None):
        """

        :param inputs: [b, 80]
        :param training:
        :return:
        """

        state0 = self.state0
        state1 = self.state1

        x = self.embedding(inputs)

        for word in tf.unstack(x, axis=1):
            out0, state0 = self.rnn_cell0(word, state0, training=training)
            out1, state1 = self.rnn_cell1(out0, state1, training=training)

        # [b, 64] -> [b, 1]
        x = self.out_layer(out1)

        prob = tf.sigmoid(x)

        return prob


# 超参数
total_words = 10000  # 文字数量
max_review_len = 80  # 句子长度
embedding_len = 100  # 词维度
batch_size = 1024  # 一次训练的样本数目
learning_rate = 0.0001  # 学习率
iteration_num = 20  # 迭代次数
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)  # 优化器
loss = tf.losses.BinaryCrossentropy(from_logits=True)  # 损失
model = RNN(64)

# 调试输出summary
model.build(input_shape=[None, 64])
print(model.summary())

# 组合
model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])


def get_data():
    # 获取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)

    # 更改句子长度
    X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)
    X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)

    # 调试输出
    print(X_train.shape, y_train.shape)  # (25000, 80) (25000,)
    print(X_test.shape, y_test.shape)  # (25000, 80) (25000,)

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))
    train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))
    test_db = test_db.batch(batch_size, drop_remainder=True)

    return train_db, test_db


if __name__ == "__main__":
    # 获取分割的数据集
    train_db, test_db = get_data()

    # 拟合
    model.fit(train_db, epochs=iteration_num, validation_data=test_db, validation_freq=1)

输出结果:

Model: "rnn"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding (Embedding) multiple 1000000
_________________________________________________________________
simple_rnn_cell (SimpleRNNCe multiple 10560
_________________________________________________________________
simple_rnn_cell_1 (SimpleRNN multiple 8256
_________________________________________________________________
dense (Dense) multiple 65
=================================================================
Total params: 1,018,881
Trainable params: 1,018,881
Non-trainable params: 0
_________________________________________________________________
None

(25000, 80) (25000,)
(25000, 80) (25000,)
Epoch 1/20
2021-07-10 17:59:45.150639: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
24/24 [==============================] - 12s 294ms/step - loss: 0.7113 - accuracy: 0.5033 - val_loss: 0.6968 - val_accuracy: 0.4994
Epoch 2/20
24/24 [==============================] - 7s 292ms/step - loss: 0.6951 - accuracy: 0.5005 - val_loss: 0.6939 - val_accuracy: 0.4994
Epoch 3/20
24/24 [==============================] - 7s 297ms/step - loss: 0.6937 - accuracy: 0.5000 - val_loss: 0.6935 - val_accuracy: 0.4994
Epoch 4/20
24/24 [==============================] - 8s 316ms/step - loss: 0.6934 - accuracy: 0.5001 - val_loss: 0.6933 - val_accuracy: 0.4994
Epoch 5/20
24/24 [==============================] - 7s 301ms/step - loss: 0.6934 - accuracy: 0.4996 - val_loss: 0.6933 - val_accuracy: 0.4994
Epoch 6/20
24/24 [==============================] - 8s 334ms/step - loss: 0.6932 - accuracy: 0.5000 - val_loss: 0.6932 - val_accuracy: 0.4994
Epoch 7/20
24/24 [==============================] - 10s 398ms/step - loss: 0.6931 - accuracy: 0.5006 - val_loss: 0.6932 - val_accuracy: 0.4994
Epoch 8/20
24/24 [==============================] - 9s 382ms/step - loss: 0.6930 - accuracy: 0.5006 - val_loss: 0.6931 - val_accuracy: 0.4994
Epoch 9/20
24/24 [==============================] - 8s 322ms/step - loss: 0.6924 - accuracy: 0.4995 - val_loss: 0.6913 - val_accuracy: 0.5240
Epoch 10/20
24/24 [==============================] - 8s 321ms/step - loss: 0.6812 - accuracy: 0.5501 - val_loss: 0.6655 - val_accuracy: 0.5767
Epoch 11/20
24/24 [==============================] - 8s 318ms/step - loss: 0.6381 - accuracy: 0.6896 - val_loss: 0.6235 - val_accuracy: 0.7399
Epoch 12/20
24/24 [==============================] - 8s 323ms/step - loss: 0.6088 - accuracy: 0.7655 - val_loss: 0.6110 - val_accuracy: 0.7533
Epoch 13/20
24/24 [==============================] - 8s 321ms/step - loss: 0.5949 - accuracy: 0.7956 - val_loss: 0.6111 - val_accuracy: 0.7878
Epoch 14/20
24/24 [==============================] - 8s 324ms/step - loss: 0.5859 - accuracy: 0.8142 - val_loss: 0.5993 - val_accuracy: 0.7904
Epoch 15/20
24/24 [==============================] - 8s 330ms/step - loss: 0.5791 - accuracy: 0.8318 - val_loss: 0.5961 - val_accuracy: 0.7907
Epoch 16/20
24/24 [==============================] - 8s 340ms/step - loss: 0.5739 - accuracy: 0.8421 - val_loss: 0.5942 - val_accuracy: 0.7961
Epoch 17/20
24/24 [==============================] - 9s 378ms/step - loss: 0.5701 - accuracy: 0.8497 - val_loss: 0.5933 - val_accuracy: 0.8014
Epoch 18/20
24/24 [==============================] - 9s 361ms/step - loss: 0.5665 - accuracy: 0.8589 - val_loss: 0.5958 - val_accuracy: 0.8082
Epoch 19/20
24/24 [==============================] - 8s 353ms/step - loss: 0.5630 - accuracy: 0.8681 - val_loss: 0.5931 - val_accuracy: 0.7966
Epoch 20/20
24/24 [==============================] - 8s 314ms/step - loss: 0.5614 - accuracy: 0.8702 - val_loss: 0.5925 - val_accuracy: 0.7959

Process finished with exit code 0

到此这篇关于手把手教你使用TensorFlow2实现RNN的文章就介绍到这了,更多相关TensorFlow2实现RNN内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Django实现简单分页功能的方法详解
Dec 05 Python
dataframe设置两个条件取值的实例
Apr 12 Python
Django 多语言教程的实现(i18n)
Jul 07 Python
python退出命令是什么?详解python退出方法
Dec 10 Python
Python3 pip3 list 出现 DEPRECATION 警告的解决方法
Feb 16 Python
Python如何调用外部系统命令
Aug 07 Python
python 用户交互输入input的4种用法详解
Sep 24 Python
win10下python2和python3共存问题解决方法
Dec 23 Python
pytorch:torch.mm()和torch.matmul()的使用
Dec 27 Python
python构造函数init实例方法解析
Jan 19 Python
pyecharts绘制中国2020肺炎疫情地图的实例代码
Feb 12 Python
浅谈如何使用python抓取网页中的动态数据实现
Aug 17 Python
一篇文章弄懂Python关键字、标识符和变量
python开发飞机大战游戏
详解Python中下划线的5种含义
Python操作CSV格式文件的方法大全
openstack中的rpc远程调用的方法
Python实现查询剪贴板自动匹配信息的思路详解
如何利用Python实现一个论文降重工具
You might like
《Re:从零开始的异世界生活》剧情体验,手游新作定名
2020/04/09 日漫
PHP中调用ASP.NET的WebService的代码
2011/04/22 PHP
php实现的返回数据格式化类实例
2014/09/22 PHP
PHP函数实现分页含文本分页和数字分页
2014/10/23 PHP
juqery 学习之五 文档处理 插入
2011/02/11 Javascript
js创建数据共享接口——简化框架之间相互传值
2011/10/23 Javascript
原生js写的放大镜效果
2012/08/22 Javascript
公共js在页面底部加载的注意事项介绍
2013/07/18 Javascript
JavaScript声明变量时为什么要加var关键字
2014/09/29 Javascript
jQuery实现“扫码阅读”功能
2015/01/21 Javascript
JS中实现函数return多个返回值的实例
2017/02/21 Javascript
Web前端框架Angular4.0.0 正式版发布
2017/03/28 Javascript
解决vue打包之后静态资源图片失效的问题
2018/02/21 Javascript
记一次webpack3升级webpack4的踩坑经历
2018/06/12 Javascript
使用JS判断移动端手机横竖屏状态
2018/07/30 Javascript
JQuery Ajax执行跨域请求数据的解决方案
2018/12/10 jQuery
原生JS实现的自动轮播图功能详解
2018/12/28 Javascript
[06:57]DOTA2-DPC中国联赛 正赛 Ehome vs PSG.LGD 选手采访
2021/03/11 DOTA
Python httplib,smtplib使用方法
2008/09/06 Python
Python多进程并发(multiprocessing)用法实例详解
2015/06/02 Python
python实现机器人行走效果
2018/01/29 Python
python爬虫之线程池和进程池功能与用法详解
2018/08/02 Python
Python3对称加密算法AES、DES3实例详解
2018/12/06 Python
python抓取网页内容并进行语音播报的方法
2018/12/24 Python
Python实现一个论文下载器的过程
2021/01/18 Python
HTML5探秘:用requestAnimationFrame优化Web动画
2018/06/03 HTML / CSS
Sperry官网:帆船鞋创始品牌
2016/09/07 全球购物
编程输出如下图形
2013/11/24 面试题
法学专业本科生自荐信范文
2013/12/17 职场文书
银行优秀员工事迹材料
2014/05/29 职场文书
班组拓展活动方案
2014/08/14 职场文书
2019数学教师下学期工作总结
2019/06/27 职场文书
Python基础之hashlib模块详解
2021/05/06 Python
详解Laravel服务容器的优势
2021/05/29 PHP
vue 自定义组件添加原生事件
2022/04/21 Vue.js
Redis唯一ID生成器的实现
2022/07/07 Redis