python实现信号时域统计特征提取代码


Posted in Python onFebruary 26, 2020

1.实验数据需求

为了对采集的压力实验数据做特征工程,需要对信号进行时域的统计特征提取,包含了均值、均方根、偏度、峭度、波形因子、波峰因子、脉冲因子、峭度因子等,现用python对其进行实现。

2.python实现

其中的输入参数含义:

① data:实验数据的DataFrame

② p1:所截取实验信号的起始采样点位置

③ p2:所截取实验信号的终止采样点位置

from pandas import Series
import math
pstf_list=[]
def psfeatureTime(data,p1,p2):
 #均值
 df_mean=data[p1:p2].mean()
 #方差
 df_var=data[p1:p2].var()
 #标准差
 df_std=data[p1:p2].std()
 #均方根
 df_rms=math.sqrt(pow(df_mean,2) + pow(df_std,2))
 #偏度
 df_skew=data[p1:p2].skew()
 #峭度
 df_kurt=data[p1:p2].kurt()
 sum=0
 for i in range(p1,p2):
  sum+=math.sqrt(abs(data[i]))
 #波形因子
 df_boxing=df_rms / (abs(data[p1:p2]).mean())
 #峰值因子
 df_fengzhi=(max(data[p1:p2])) / df_rms
 #脉冲因子
 df_maichong=(max(data[p1:p2])) / (abs(data[p1:p2]).mean())
 #裕度因子
 df_yudu=(max(data[p1:p2])) / pow((sum/(p2-p1)),2)
 featuretime_list = [df_mean,df_rms,df_skew,df_kurt,df_boxing,df_fengzhi,df_maichong,df_yudu]
 return featuretime_list

3.结果与说明

python实现信号时域统计特征提取代码

补充拓展:python数据结构与算法--回溯算法详解

回溯算法:一种优先搜索算法(试探法);按优条件向前搜索,以达目标;当试探到某步,发现原来选择并不好(走不通),就退回重新选择。

回溯算法的一般步骤:1:定义问题的解空间(搜索中动态生成);2:确定易搜索的解空间结构(一般为树形结构或图);3:以深度优先的方式搜索解空间,搜索中用剪枝函数避免无效搜索。

剪枝函数:1:用约束函数在扩展节点处减去不满足约束条件的子树;2:用限界函数减去不能得到最优解的子树。

回溯法:实战

1:电话号码的字母组合

方法:回溯(适用于组合问题)

class Solution:
 def letterCombination(self,digits):
  
  phone={'2': ['a', 'b', 'c'],
     '3': ['d', 'e', 'f'],
     '4': ['g', 'h', 'i'],
     
     '5': ['j', 'k', 'l'],
     '6': ['m', 'n', 'o'],
     '7': ['p', 'q', 'r', 's'],
     '8': ['t', 'u', 'v'],
     '9': ['w', 'x', 'y', 'z']}
  
  res=[]#存放组合结果
  def backtrack(combination,next_digits):#回溯函数
   #combination目前已经产生的组合,next_digits:输入的下一个字符
   if len(next_digits)==0: #递归出口
    res.append(combination)
   else:
    for i in phone[next_digits[0]]:
     backtrack(combination+i,next_digits[1:]) #递归实现回溯
  if digits:
   backtrack('',digits) #初始化
  return res

2:全排列

输入: [1,2,3]

输出:

[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]

class Solution:
 def permute(self,nums):
  
  res=[] #存放组合结果
  size=len(nums)
  
  def backtrack(combination,nums):
   #combination目前已经产生的组合,nums为剩下的数组
   #递归出口
   #递归的结束一定 要有return
   if len(combination)==size:
    res.append(combination) 
    return #注意
   for i in range(len(nums)):
     backtrack(combination+[nums[i]],nums[:i]+nums[i+1:]) #递归回溯
  
  backtrack([],nums)
  return res
    
if __name__=='__main__':
 nums = [1,2,3]
 solution=Solution()
 print(solution.permute(nums))

3:数字组合

输入: candidates = [2,3,6,7], target = 7,

所求解集为:

[
[7],
[2,2,3]
]

class Solution:
 def combinationArray(self,candidates,target):
  
  candidates.sort()
  res=[] #存放组合结果
  size=len(candidates)
  
  def backtrack(combination,cur_sum,j):
   #combination目前已经产生的组合,cur_sum当前计算和,j用于控制求和的查找范围起点
   #递归出口
   if cur_sum>target:
    return 
   if cur_sum==target:
    res.append(combination)
   for i in range(j,size): #j避免重复
    if cur_sum+candidates[i]>target: #约束函数(剪)
     break
    j=i
    backtrack(combination+[candidates[i]],cur_sum+candidates[i],j)#递归回溯
    
  backtrack([],0,0)
  return res
if __name__=='__main__':
 candidates = [2,3,6,7]
 target = 7
 solution=Solution()
 print(solution.combinationArray(candidates,target))

4:

N皇后问题

class Solution: 
 def solveNqueen(self,n):
  
  res=[] #存放结果组合,对于N皇后问题,这里存放的是其放在每一行对应的列下标  
  def backtrack(combination):
    if len(combination)==n:
     res.append(combination)
     return
    for j in range(n):
     if combination:
      #排除当前行,列和对应的两个对角线。
      if j not in combination and j!=combination[-1]+1 and j!=combination[-1]-1:#约束条件
       backtrack(combination+[j]) #递归回溯
      else:
       continue 
     else:
     backtrack(combination+[j])     
             
  backtrack([]) #回溯初始化
  
  #转化为需要的格式
  output=[["." * k + "Q" + "." * (n - k - 1) for k in i] for i in res] #列表生成器
  return output
  
if __name__=='__main__':
 n=4
 solution=Solution()
 print(solution.solveNqueen(n))

5:子集

[1,2,3]的子集[[], [1], [1, 2], [1, 2, 3], [1, 3], [2], [2, 3], [3]]

class Solution(object):
 def subsets(self, nums):
  """
  :type nums: List[int]
  :rtype: List[List[int]]
  """
  res=[]#存放组合结果
  size=len(nums)
  
  def backtrack(combination,nums):
   #combination目前已经产生的组合,nums为剩下的数组
   if len(combination)<=size:
    res.append(combination)
   #递归出口
   #递归的结束一定 要有return
   if len(combination)==size:
    return 
   
   for i in range(len(nums)):
    backtrack(combination+[nums[i]],nums[i+1:]) #递归回溯
   
  backtrack([],nums)
  return res
 
if __name__=='__main__':
 nums=[1,2,3]
 solution=Solution()
 print(solution.subsets(nums))

6:

字母大小写的全排列

给定一个字符串S,通过将字符串S中的每个字母转变大小写,我们可以获得一个新的字符串。返回所有可能得到的字符串集合。

输入: S = "a1b2"

输出: ["a1b2", "a1B2", "A1b2", "A1B2"]

class Solution:
 def letterpermute(self,S):
  
  res=[]
  size=len(S)
  
  def backtrack(combination,S):
   
   if len(combination)==size:
    res.append(''.join(combination))
    return 
   
   for i in range(len(S)):
    if "a"<=S[i]<= "z" or "A"<=S[i]<= "Z":
     for j in range(2):
      if j==0:
       backtrack(combination+[S[i].lower()],S[i+1:])
      if j==1:
       backtrack(combination+[S[i].upper()],S[i+1:])
      
    else:
     backtrack(combination+[S[i]],S[i+1:])
     
     
  backtrack([],S)
  return res   
 
if __name__=='__main__':
 S=[i for i in "1B2"]
 solution=Solution()
 print(solution.letterpermute(S))

7:生成括号

括号生成:给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合。

例如,给出 n = 3,生成结果为:

[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]

class Solution:
 def generateParenthesis(self,n):
  
  res=[] #存放组合结果
  def backtrack(combination,left,right):
   #combination目前已经产生的组合
   if len(combination)==2*n: #递归出口
    res.append(combination)
   #对于有效的括号,左边先出
   if left<n:
    backtrack(combination+'(',left+1,right)#递归实现回溯
   if right<left:
    backtrack(combination+')',left,right+1)#递归实现回溯
     
  backtrack('',0,0) #初始化
  return res 
if __name__=='__main__':
 n=3
 solution=Solution()
 print(solution.generateParenthesis(n))

以上这篇python实现信号时域统计特征提取代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Django的视图(View)外使用Session的方法
Jul 23 Python
Python数据结构与算法之使用队列解决小猫钓鱼问题
Dec 14 Python
快速解决安装python没有scripts文件夹的问题
Apr 03 Python
python的pandas工具包,保存.csv文件时不要表头的实例
Jun 14 Python
详解Python 切片语法
Jun 10 Python
python 判断字符串中是否含有汉字或非汉字的实例
Jul 15 Python
numpy求平均值的维度设定的例子
Aug 24 Python
利用python Selenium实现自动登陆京东签到领金币功能
Oct 31 Python
python 实现按对象传值
Dec 26 Python
Python装饰器的应用场景代码总结
Apr 10 Python
tensorflow 大于某个值为1,小于为0的实例
Jun 30 Python
python自动提取文本中的时间(包含中文日期)
Aug 31 Python
Python 基于FIR实现Hilbert滤波器求信号包络详解
Feb 26 #Python
python实现逆滤波与维纳滤波示例
Feb 26 #Python
Python全面分析系统的时域特性和频率域特性
Feb 26 #Python
解决pycharm每次打开项目都需要配置解释器和安装库问题
Feb 26 #Python
Python中os模块功能与用法详解
Feb 26 #Python
Python中sys模块功能与用法实例详解
Feb 26 #Python
Python线程threading模块用法详解
Feb 26 #Python
You might like
PHP中cookie和session的区别实例分析
2014/08/28 PHP
PHP程序员的技术成长规划
2016/03/25 PHP
phpmailer简单发送邮件的方法(附phpmailer源码下载)
2016/06/13 PHP
php实现图片按比例截取的方法
2017/02/06 PHP
轻松创建nodejs服务器(6):作出响应
2014/12/18 NodeJs
jQuery基础_入门必看知识点
2016/07/04 Javascript
Bootstrap Modal遮罩弹出层(完整版)
2016/11/21 Javascript
JS中位置与大小的获取方法
2016/11/22 Javascript
正则表达式,替换所有HTML标签的简单实例
2016/11/28 Javascript
Angularjs 动态改变title标题(兼容ios)
2016/12/29 Javascript
nodejs实现发出蜂鸣声音(系统报警声)的方法
2017/01/18 NodeJs
基于JSON数据格式详解
2017/08/31 Javascript
vue组件tabbar使用方法详解
2018/11/06 Javascript
vue将后台数据时间戳转换成日期格式
2019/07/31 Javascript
微信小程序自定义tabbar custom-tab-bar 6s出不来解决方案(cover-view不兼容)
2019/11/01 Javascript
react-native聊天室|RN版聊天App仿微信实例|RN仿微信界面
2019/11/12 Javascript
vue实现登录拦截
2020/06/29 Javascript
Python中最大最小赋值小技巧(分享)
2017/12/23 Python
Python实现中一次读取多个值的方法
2018/04/22 Python
Python3实现转换Image图片格式
2018/06/21 Python
python移位运算的实现
2019/07/15 Python
python实现全排列代码(回溯、深度优先搜索)
2020/02/26 Python
Pycharm如何运行.py文件的方法步骤
2020/03/03 Python
Python 如何调试程序崩溃错误
2020/08/03 Python
HTML5的Geolocation地理位置定位API使用教程
2016/05/12 HTML / CSS
CAT鞋美国官网:CAT Footwear
2017/11/27 全球购物
精油和天然健康美容产品:Art Naturals
2018/01/27 全球购物
日本最大级玩偶手办购物:あみあみ Amiami
2018/04/23 全球购物
PPP协议组成及简述协议协商的基本过程
2015/05/28 面试题
社团文化节邀请函
2014/01/10 职场文书
迟到检讨书300字
2014/02/14 职场文书
绩效工资实施方案
2014/03/15 职场文书
2015年元旦活动总结
2014/05/09 职场文书
中学生学习保证书
2015/02/26 职场文书
房地产销售员岗位职责
2015/04/11 职场文书
初中班长竞选稿
2015/11/20 职场文书