遗传算法之Python实现代码


Posted in Python onOctober 10, 2017

写在前面

之前的文章中已经讲过了遗传算法的基本流程,并且用MATLAB实现过一遍了。这一篇文章主要面对的人群是看过了我之前的文章,因此我就不再赘述遗传算法是什么以及基本的内容了,假设大家已经知道我是怎么写遗传算法的了。

Python的遗传算法主函数

我的思想是,创建一个染色体的类,其中包括了两个变量:染色体chrom与适应度fitness。因此我们就可以通过直接建立对象来作为种群中的个体。

#染色体的类
class Chrom:
  chrom = []
  fitness = 0
  def showChrom(self):
    print(self.chrom)
  def showFitness(self):
    print(self.fitness)

所以我们开始设置基础参数。其中种群的表达方式我用的是字典,也就是用一个字典来保存种群内的所有个体,这个也是我想出来的创建多个对象的方法。

将字典的索引为个体的标号,如:chrom1, chrom2等。字典索引的值就是一个对象。这个对象拥有两个属性,就是染色体与适应度。

其实在这一方便来说,我觉得在思路上是优于利用MATLAB的矩阵式编程的。因为这样可以很直观的将个体与个体的属性这一种思想给表达出来,相比一堆矩阵来说,在逻辑上比较容易接受。

#基础参数
N = 200 #种群内个体数目
mut = 0.2 #突变概率
acr = 0.2 #交叉概率

pop = {} #存储染色体的字典
for i in range(N):
  pop['chrom'+str(i)] = Chrom()
chromNodes = 2 #染色体节点数(变量个数)
iterNum = 10000 #迭代次数
chromRange = [[0, 10], [0, 10]] #染色体范围
aveFitnessList = [] #平均适应度
bestFitnessList = [] #最优适应度

之后就是初始染色体了,其中就牵扯到了各种用来初始化种群、计算适应度、找最优等函数,我在这里分出了两个文件,分别为Genetic.py与Fitness.py。

Genetic.py里面有八个函数,主要包含了作用于种群或者染色体操作的函数,分别为:

  1. findBest函数,用于寻找种群中的最优染色体;
  2. findworse函数,用于寻找种群中的最劣染色体;
  3. initialize函数,用于初始化种群;
  4. calAveFitness函数,用于计算种群的平均适应度;
  5. mutChrom函数,用于对染色体进行变异;
  6. inRange函数,用于判断染色体节点值是否越界;
  7. acrChrom函数,用于对染色体进行交叉;
  8. compareChrom函数,用于比较两个染色体孰优孰劣。

Fitness.py里面有两个函数,主要包含了对适应度操作的函数,分别为:

  1. calFitness函数,用来迭代每一个个体,并计算适应度(利用funcFitness函数计算);
  2. funcFitness函数,计算单个个体的适应度。

因此可以列出初始化代码为

#初始染色体
pop = Genetic.initialize(pop, chromNodes, chromRange)
pop = Fitness.calFitness(pop) #计算适应度
bestChrom = Genetic.findBest(pop) #寻找最优染色体
bestFitnessList.append(bestChrom[1]) #将当前最优适应度压入列表中
aveFitnessList.append(Genetic.calAveFitness(pop, N)) #计算并存储平均适应度

迭代过程的思路和逻辑与MATLAB无异

#开始迭代
for t in range(iterNum):
  #染色体突变
  pop = Genetic.mutChrom(pop, mut, chromNodes, bestChrom, chromRange)
  #染色体交换
  pop = Genetic.acrChrom(pop, acr, chromNodes)
  #寻找最优
  nowBestChrom = Genetic.findBest(pop)
  #比较前一个时间的最优和现在的最优
  bestChrom = Genetic.compareChrom(nowBestChrom, bestChrom)
  #寻找与替换最劣
  worseChrom = Genetic.findWorse(pop)
  pop[worseChrom[0]].chrom = pop[bestChrom[0]].chrom.copy()
  pop[worseChrom[0]].fitness = pop[bestChrom[0]].fitness
  #存储最优与平均
  bestFitnessList.append(bestChrom[1])
  aveFitnessList.append(Genetic.calAveFitness(pop, N))

最后再做一下迭代的的图像

plt.figure(1)
plt.plot(x, aveFitnessList)
plt.plot(x, bestFitnessList)
plt.show()

最后再在最前面加上各种库和文件就可以运行了。

import Genetic
import Fitness
import matplotlib.pyplot as plt
import numpy as np

感悟

可以说最主要的感悟就是染色体这一个类。其实那个Genetic.py与Fitness.py这两个文件也可以直接包装成类,但是这样一来我就嫌主文件太臃肿,在其他里面再包装成类又多此一举,毕竟这只是一个小程序,所以我就这样写了。

深刻感悟到了面向对象编程的优点,在编程逻辑的处理上真是一种享受,只需要思考对象的属性即可,省去了许多复杂的思考。

另一个感悟就是创建多个对象时,利用字典的方法来创建对象。当初我也是困惑怎么建立一个类似于C++中的对象数组,上网查找了各种方法,结果都避而不谈(当然,也可能是我搜索能力太差没找到),所以经过尝试中遇到到了这种方法。

等有空我再详细说一下这个方法吧,这一次就先到这里。

剩余的函数补充

首先是Genetic.py里面的八个函数

import random

#寻找最优染色体
def findBest(pop):
  best = ['1', 0.0000001]
  for i in pop:
    if best[1] < pop[i].fitness:
      best = [i, pop[i].fitness]
  return best

#寻找最劣染色体
def findWorse(pop):
  worse = ['1', 999999]
  for i in pop:
    if worse[1] > pop[i].fitness:
      worse = [i, pop[i].fitness]
  return worse

#赋初始值
def initialize(pop, chromNodes, chromRange):
  for i in pop:
    chromList = []
    for j in range(chromNodes):
      chromList.append(random.uniform(chromRange[j][0], chromRange[j][1]+1))
    pop[i].chrom = chromList.copy()
  return pop

#计算平均适应度
def calAveFitness(pop, N):
  sumFitness = 0
  for i in pop:
    sumFitness = sumFitness + pop[i].fitness
  aveFitness = sumFitness / N
  return aveFitness

#进行突变
def mutChrom(pop, mut, chromNodes, bestChrom, chromRange):
  for i in pop:
    #如果随机数小于变异概率(即可以变异)
    if mut > random.random():
      mutNode = random.randrange(0,chromNodes)
      mutRange = random.random() * (1-pop[i].fitness/bestChrom[1])**2
      pop[i].chrom[mutNode] = pop[i].chrom[mutNode] * (1+mutRange)
      #判断变异后的范围是否在要求范围内
      pop[i].chrom[mutNode] = inRange(pop[i].chrom[mutNode], chromRange[mutNode])
  return pop

#检验便宜范围是否在要求范围内
def inRange(mutNode, chromRange):
  if chromRange[0] < mutNode < chromRange[1]:
    return mutNode
  elif mutNode-chromRange[0] > mutNode-chromRange[1]:
    return chromRange[1]
  else:
    return chromRange[0]

#进行交叉
def acrChrom(pop, acr, chromNodes):
  for i in pop:
    for j in pop:
      if acr > random.random():
        acrNode = random.randrange(0, chromNodes)
        #两个染色体节点进行交换
        pop[i].chrom[acrNode], pop[j].chrom[acrNode] = pop[j].chrom[acrNode], pop[i].chrom[acrNode]
  return pop

#进行比较
def compareChrom(nowbestChrom, bestChrom):
  if bestChrom[1] > nowbestChrom[1]:
    return bestChrom
  else:
    return nowbestChrom

然后是Fitness.py的两个函数

import math

def calFitness(pop):
  
  for i in pop:
    #计算每个染色体的适应度
    pop[i].fitness = funcFitness(pop[i].chrom)

  return pop

def funcFitness(chrom):
  #适应度函数
  fitness = math.sin(chrom[0])+math.cos(chrom[1])+0.1*(chrom[0]+chrom[1])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现定时播放mp3
Mar 29 Python
Python中matplotlib中文乱码解决办法
May 12 Python
Python使用爬虫爬取静态网页图片的方法详解
Jun 05 Python
详解Python网络框架Django和Scrapy安装指南
Apr 01 Python
python字符串Intern机制详解
Jul 01 Python
python实现邮件自动发送
Aug 10 Python
python解释器spython使用及原理解析
Aug 24 Python
python对数组进行排序,并输出排序后对应的索引值方式
Feb 28 Python
Python3.6 中的pyinstaller安装和使用教程
Mar 16 Python
python pandas dataframe 去重函数的具体使用
Jul 20 Python
Django drf请求模块源码解析
Jun 08 Python
python函数的两种嵌套方法使用
Apr 02 Python
Python使用arrow库优雅地处理时间数据详解
Oct 10 #Python
Python使用getpass库读取密码的示例
Oct 10 #Python
Python 逐行分割大txt文件的方法
Oct 10 #Python
Python输出带颜色的字符串实例
Oct 10 #Python
python中使用正则表达式的连接符示例代码
Oct 10 #Python
python利用正则表达式排除集合中字符的功能示例
Oct 10 #Python
python 上下文管理器使用方法小结
Oct 10 #Python
You might like
用PHP程序实现支持页面后退的两种方法
2008/06/30 PHP
PHP生成唯一的促销/优惠/折扣码(附源码)
2012/12/28 PHP
在Z-Blog中运行代码[html][/html](纯JS版)
2007/03/25 Javascript
JQuery里选择超链接的实现代码
2011/05/22 Javascript
jQuery EasyUI API 中文文档 - PropertyGrid属性表格
2011/11/18 Javascript
JavaScript高级程序设计(第3版)学习笔记6 初识js对象
2012/10/11 Javascript
JS和jquery获取各种屏幕的宽度和高度的代码
2013/08/02 Javascript
Jquery的hover方法让鼠标经过li时背景变色
2013/09/06 Javascript
JQuery教学之性能优化
2014/05/14 Javascript
基于Bootstrap实现Material Design风格表单插件 附源码下载
2016/04/18 Javascript
angular.JS实现网页禁用调试、复制和剪切
2017/03/31 Javascript
无循环 JavaScript(map、reduce、filter和find)
2017/04/08 Javascript
详解Layer弹出层样式
2017/08/21 Javascript
vue 指定组件缓存实例详解
2018/04/01 Javascript
JavaScript的词法结构精华篇
2018/10/17 Javascript
详解package.json版本号规则
2019/08/01 Javascript
vscode 配置vue+vetur+eslint+prettier自动格式化功能
2020/03/23 Javascript
jQuery实现可以计算进制转换的计算器
2020/10/19 jQuery
[40:19]2018完美盛典CS.GO表演赛
2018/12/17 DOTA
Python WSGI的深入理解
2018/08/01 Python
Python3获取拉勾网招聘信息的方法实例
2019/04/03 Python
通过python改变图片特定区域的颜色详解
2019/07/15 Python
基于Django静态资源部署404的解决方法
2019/07/28 Python
pytorch torch.expand和torch.repeat的区别详解
2019/11/05 Python
python实现查找所有程序的安装信息
2020/02/18 Python
python程序文件扩展名知识点详解
2020/02/27 Python
以特惠价提供在线奢侈品购物:FRMODA.com
2018/01/25 全球购物
挂牌仪式策划方案
2014/05/18 职场文书
幼儿园端午节活动方案
2014/08/25 职场文书
维稳承诺书
2015/01/20 职场文书
2015年后勤工作总结范文
2015/04/08 职场文书
横空出世观后感
2015/06/09 职场文书
2016年“5.12”护士节慰问信
2015/11/30 职场文书
《领导干部从政道德启示录》学习心得体会
2016/01/20 职场文书
《社戏》教学反思
2016/02/22 职场文书
MIME类型中application/xml与text/xml的区别介绍
2022/01/18 HTML / CSS