python数据处理 根据颜色对图片进行分类的方法


Posted in Python onDecember 08, 2018

前面一篇文章有说过,利用scrapy来爬取图片,是为了对图片数据进行分类而收集数据。

本篇文章就是利用上次爬取的图片数据,根据图片的颜色特征来做一个简单的分类处理。

实现步骤如下:

1:图片路径添加

2:对比度处理

3:滤波处理

4:数据提取以及特征向量化

5:图片分类处理

6:根据处理结果将图片分类保存

代码量中等,还可以更少,只是我为了练习类的使用,而将每个步骤都封装成了一个独立的类,当然里面也有类继承的问题,遇到的问题前面一篇文章有讲解。内容可能有点繁琐,尤其是文件和路径的使用(可以自己修改),已经尽量优化代码了。

爬取的原始数据如下:

python数据处理 根据颜色对图片进行分类的方法

直接上代码:

import os
import numpy as np
import skimage
import matplotlib.pyplot as plt
from skimage import io 				#读取图片
from skimage import exposure		#调用调对比度的方法	rescale_intensity、equalize_hist
from skimage.filters import gaussian	#高斯
from skimage import img_as_float  #图片unit8类型到float
from scipy.cluster.vq import kmeans,vq,whiten  #聚类算法
import shutil	#文件夹内容删除
 
class Path(object):
	def __init__(self):
		self.path = r"D:\PYscrapy\get_lixiaoran\picture"
		self.pathlist = []	#原始图片列表
		self.page = 0
 
	def append(self):					#将每张图片的路径加载到列表中
		much = os.listdir(self.path)
		for i in range(len(much)):
			repath = os.path.join(self.path,str(self.page)+'.jpg')
			self.page +=1
			self.pathlist.append(repath)
		return self.pathlist
 
class Contrast(object):
	def __init__(self,pathlist):
		self.pathlist = pathlist
		self.contrastlist = []	#改变对比度之后的图片列表
		self.path2 = r"D:\PYscrapy\get_lixiaoran\picture2"
		self.page2 = 0
 
	def balance(self):			#将每张图片进行对比度的处理,两种方式 1:均衡化 2:从某个值开始取极值
		if os.path.exists(self.path2) == False:
			os.mkdir(self.path2)
 
		# for lis in self.pathlist:
		# 	data = skimage.io.imread(lis)
		# 	equalized = exposure.equalize_hist(data)	#方法一这里使用个人人为更好的均衡化处理对比度的方法
		# 	self.contrastlist.append(equalized)
 
		for lis in self.pathlist:
			data = skimage.io.imread(lis)
			high_contrast = exposure.rescale_intensity(data,in_range=(20,220))	#方法二 以20和220取两端极值
			self.contrastlist.append(high_contrast)
 
		for img in self.contrastlist:
			repath = os.path.join(self.path2,str(self.page2)+'.jpg')		#保存修改后的图片
			skimage.io.imsave(repath,img)
			self.page2 +=1
 
class Filter(Contrast):
	def __init__(self,pathlist):
		super().__init__(pathlist)
		self.path31 = self.path2
		self.path32 = r"D:\PYscrapy\get_lixiaoran\picture3"
		self.page3 = 0
		self.filterlist = []
 
	def filte_r(self):
		img = os.listdir(self.path31)	#读取文件内容
		if os.path.exists(self.path32) == False:
			os.mkdir(self.path32)
		for lis in range(len(img)):			#循环做每张图片的高斯过滤
			path = os.path.join(self.path31,str(lis)+r'.jpg')
			img = skimage.io.imread(path)
			gas = gaussian(img,sigma=3)		#multichannel=False	去掉颜色2D
			self.filterlist.append(gas)
			path_gas = os.path.join(self.path32,str(self.page3)+r'.jpg')
			skimage.io.imsave(path_gas,gas)
			self.page3 +=1
		return self.path32
 
class Vectoring(object):
	def __init__(self,filter_path):
		self.path41 = filter_path
		self.diff = []
		self.calculate = []
 
	def vector(self):
		numbers = os.listdir(self.path41)	#获取文件夹内容
		os.chdir(self.path41)		#切换路径
		for i in range(len(numbers)):
			self.diff.append([])
			for j in range(4):
				self.diff[i].append([])		#diff[[number],[img_float],[bin_centers],[hist]]
 
		for cnt,number in enumerate(numbers):
			img_float = img_as_float(skimage.io.imread(number))		#将图像ndarry nint8->float
			hist,bin_centers = exposure.histogram(img_float,nbins=10)	#取图像的	每个区间的像素值	分隔区间
			self.diff[cnt][0] = number
			self.diff[cnt][1] = img_float
			self.diff[cnt][2] = bin_centers	#把数据添加到diff中
			self.diff[cnt][3] = hist
 
		for i,j in enumerate(self.diff):		#使用hist和bin_centers相乘来降维,向量化
			self.calculate.append([y*self.diff[i][3][x] for x,y in enumerate(self.diff[i][2])])	#这里可能需要理解一下,就是涉及的参数有点多
		for i in range(len(self.diff)):
			self.diff[i].append(self.calculate[i])	#将特征向量calculate也加入到diff中
 
		return self.diff 			#diff[[number],[img_float],[bin_centers],[hist],[calculate]]
 
class Modeling(Vectoring):
	def __init__(self,filter_path,K):
		super().__init__(filter_path)
		self.K = K
 
	def model(self):
		diff = self.vector()
		calculate = []
		for i in range(len(diff)):
			calculate.append(diff[i][4])
		spot = whiten(calculate)			#这里使用scipy的k-means方法来对图片进行分类
		center,_ = kmeans(spot,self.K)		#如果对scipy的k-means不熟悉,前面有专门的讲解
		cluster,_ = vq(spot,center)
		return diff,cluster 	#获得预测值
		
class Predicting(object):
	def __init__(self,predicted_diff,predicted_cluster,K):
		self.diff = predicted_diff
		self.cluster = predicted_cluster
		self.path42 = r'D:\PYscrapy\get_lixiaoran\picture4'
		self.K = K
 
	def predicted(self):
		if os.path.exists(self.path42) == True:
			much = shutil.rmtree(self.path42)
			os.mkdir(self.path42)
		else:
			os.mkdir(self.path42)
		os.chdir(self.path42)
		for i in range(self.K):			#创建K个文件夹
			os.mkdir('classify{}'.format(i))
		for i,j in enumerate(self.cluster):
			skimage.io.imsave('classify{}\\{}'.format(j,self.diff[i][0]),self.diff[i][1])	#根据图片的分类来将它们保存至对应的文件夹
 
if __name__=="__main__":
	np.random.seed(10)
	#文件路径添加
	start = Path()
	pathlist = start.append()
 
	#对比度类
	second = Contrast(pathlist)
	second.balance()	#get改变对比度后的图片个数
 
	#高斯过滤
	filte = Filter(pathlist)
	filter_path = filte.filte_r()
 
	#数据提取及向量化
	vectoring = Vectoring(filter_path)
 
	#K值的自定义
	K = 3
 
	#建模
	modeling = Modeling(filter_path,K)
	predicted_diff,predicted_cluster = modeling.model()
 
	#预测
	predicted = Predicting(predicted_diff,predicted_cluster,K)
	predicted.predicted()

文件如下:

python数据处理 根据颜色对图片进行分类的方法

(K=3)分类如下(picrure4):

python数据处理 根据颜色对图片进行分类的方法

python数据处理 根据颜色对图片进行分类的方法

白色的基本在一类

python数据处理 根据颜色对图片进行分类的方法

黑色的基本一类

分类出来的图片比较模糊是因为,我分类的是处理过后的图片,并非原图。

其实仔细看效果还是有的,就是确实不是太明显,图片的内容还是有点复杂的。大体的框架已经有了,只是优化的问题,调整优化,以及向量特征化的处理,就能得到更好的结果。或者使用一些更好的处理方式,我这里只是简单的使用了几种常见的图片处理方式,所以效果一般。

这里的类有点多,从上到下是类的顺序,所以一步步看还是不复杂的。如果有什么好的建议可以分享一下。

以上这篇python数据处理 根据颜色对图片进行分类的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python不带重复的全排列代码
Aug 13 Python
解决Python中由于logging模块误用导致的内存泄露
Apr 23 Python
Python画图学习入门教程
Jul 01 Python
python、java等哪一门编程语言适合人工智能?
Nov 13 Python
Pycharm2017版本设置启动时默认自动打开项目的方法
Oct 29 Python
python爬虫之urllib库常用方法用法总结大全
Nov 14 Python
python使用参数对嵌套字典进行取值的方法
Apr 26 Python
Python学习笔记之文件的读写操作实例分析
Aug 07 Python
使用Python串口实时显示数据并绘图的例子
Dec 26 Python
pytorch 如何使用float64训练
May 24 Python
Python 语言实现六大查找算法
Jun 30 Python
Python实现滑雪小游戏
Sep 25 Python
Python发送邮件测试报告操作实例详解
Dec 08 #Python
Python自动发送邮件的方法实例总结
Dec 08 #Python
Python数据集切分实例
Dec 08 #Python
python分批定量读取文件内容,输出到不同文件中的方法
Dec 08 #Python
对python遍历文件夹中的所有jpg文件的实例详解
Dec 08 #Python
pandas求两个表格不相交的集合方法
Dec 08 #Python
对pytorch网络层结构的数组化详解
Dec 08 #Python
You might like
如何使用PHP中的字符串函数
2006/11/24 PHP
jQuery 源码分析笔记
2011/05/25 PHP
浅谈PHP与C#的值类型指向区别的详解
2013/05/21 PHP
简单PHP会话(session)说明介绍
2016/08/21 PHP
Yii框架函数简单用法分析
2019/09/09 PHP
use jscript List Installed Software
2007/06/11 Javascript
javascript函数中的arguments参数
2010/08/01 Javascript
IE关闭时判断及AJAX注销案例学习
2013/02/18 Javascript
解析DHTML,JavaScript,DOM,BOM以及WEB标准的描述
2013/06/19 Javascript
简单的ajax连接库分享(不用jquery的ajax)
2014/01/19 Javascript
微信小程序 图片等比例缩放(图片自适应屏幕)
2016/11/16 Javascript
js获取隐藏元素的宽高
2017/02/24 Javascript
JS实现课堂随机点名和顺序点名
2017/03/09 Javascript
vue.js指令和组件详细介绍及实例
2017/04/06 Javascript
VUE元素的隐藏和显示(v-show指令)
2017/06/23 Javascript
如何利用@angular/cli V6.0直接开发PWA应用详解
2018/05/06 Javascript
JavaScript中发出HTTP请求最常用的方法
2018/07/12 Javascript
Node.js连接Sql Server 2008及数据层封装详解
2018/08/27 Javascript
vue指令v-html使用过滤器filters功能实例
2019/10/25 Javascript
vue中是怎样监听数组变化的
2020/10/24 Javascript
深入理解Python中的元类(metaclass)
2015/02/14 Python
详细解析Python中__init__()方法的高级应用
2015/05/11 Python
python字典多键值及重复键值的使用方法(详解)
2016/10/31 Python
Python之ReportLab绘制条形码和二维码的实例
2018/01/15 Python
python获取程序执行文件路径的方法(推荐)
2018/04/26 Python
Python 中的range(),以及列表切片方法
2018/07/02 Python
使用Python写一个量化股票提醒系统
2018/08/22 Python
python Django 创建应用过程图示详解
2019/07/29 Python
Python如何使用BeautifulSoup爬取网页信息
2019/11/26 Python
css3实现3D色子翻转特效
2014/12/23 HTML / CSS
迅雷Cued工作心得体会
2014/01/27 职场文书
2014新课程改革心得体会
2014/03/10 职场文书
幸福中国演讲稿
2014/09/12 职场文书
跳高加油稿
2015/07/21 职场文书
感恩老师主题班会
2015/08/12 职场文书
感谢信
2019/04/11 职场文书