Tensorflow实现将标签变为one-hot形式


Posted in Python onMay 22, 2020

将数据标签变为类似MNIST的one-hot编码形式

def one_hot(indices, 
 depth, 
 on_value=None, 
 off_value=None, 
 axis=None, 
 dtype=None, 
 name=None):
 """Returns a one-hot tensor.
 
 The locations represented by indices in `indices` take value 
 `on_value`,
 while all other locations take value `off_value`.
 
 `on_value` and `off_value` must have matching data types. If 
 `dtype` is also
 provided, they must be the same data type as specified by 
 `dtype`.
 
 If `on_value` is not provided, it will default to the value `1` with 
 type
 `dtype`
 
 If `off_value` is not provided, it will default to the value `0` with 
 type
 `dtype`
 
 If the input `indices` is rank `N`, the output will have rank 
 `N+1`. The
 new axis is created at dimension `axis` (default: the new axis is 
 appended
 at the end).
 
 If `indices` is a scalar the output shape will be a vector of 
 length `depth`
 
 If `indices` is a vector of length `features`, the output shape will 
 be:
 
 ```
 features x depth if axis == -1
 depth x features if axis == 0
 ```
 
 If `indices` is a matrix (batch) with shape `[batch, features]`, the 
 output
 shape will be:
 
 ```
 batch x features x depth if axis == -1
 batch x depth x features if axis == 1
 depth x batch x features if axis == 0
 ```
 
 If `dtype` is not provided, it will attempt to assume the data 
 type of
 `on_value` or `off_value`, if one or both are passed in. If none 
 of
 `on_value`, `off_value`, or `dtype` are provided, `dtype` will 
 default to the
 value `tf.float32`.
 
 Note: If a non-numeric data type output is desired (`tf.string`, 
 `tf.bool`,
 etc.), both `on_value` and `off_value` _must_ be provided to 
 `one_hot`.
 
 For example:
 
 ```python
 indices = [0, 1, 2]
 depth = 3
 tf.one_hot(indices, depth) # output: [3 x 3]
 # [[1., 0., 0.],
 # [0., 1., 0.],
 # [0., 0., 1.]]
 
 indices = [0, 2, -1, 1]
 depth = 3
 tf.one_hot(indices, depth,
 on_value=5.0, off_value=0.0,
 axis=-1) # output: [4 x 3]
 # [[5.0, 0.0, 0.0], # one_hot(0)
 # [0.0, 0.0, 5.0], # one_hot(2)
 # [0.0, 0.0, 0.0], # one_hot(-1)
 # [0.0, 5.0, 0.0]] # one_hot(1)
 
 indices = [[0, 2], [1, -1]]
 depth = 3
 tf.one_hot(indices, depth,
 on_value=1.0, off_value=0.0,
 axis=-1) # output: [2 x 2 x 3]
 # [[[1.0, 0.0, 0.0], # one_hot(0)
 # [0.0, 0.0, 1.0]], # one_hot(2)
 # [[0.0, 1.0, 0.0], # one_hot(1)
 # [0.0, 0.0, 0.0]]] # one_hot(-1)
 ```
 
 Args:
 indices: A `Tensor` of indices.
 depth: A scalar defining the depth of the one hot dimension.
 on_value: A scalar defining the value to fill in output when 
 `indices[j]
 = i`. (default: 1)
 off_value: A scalar defining the value to fill in output when 
 `indices[j]
 != i`. (default: 0)
 axis: The axis to fill (default: -1, a new inner-most axis).
 dtype: The data type of the output tensor.
 
 Returns:
 output: The one-hot tensor.
 
 Raises:
 TypeError: If dtype of either `on_value` or `off_value` don't 
 match `dtype`
 TypeError: If dtype of `on_value` and `off_value` don't match 
 one another
 """
 with ops.name_scope(name, "one_hot", 
 [indices, depth, on_value, off_value, axis, 
  dtype]) as name:
 on_exists = on_value is not None
 off_exists = off_value is not None
 on_dtype = ops.convert_to_tensor(on_value).dtype.base_dtype 
  if on_exists else None
 off_dtype = ops.convert_to_tensor(off_value).dtype.
  base_dtype if off_exists else None
 if on_exists or off_exists:
  if dtype is not None:
  # Ensure provided on_value and/or off_value match dtype
  if (on_exists and on_dtype != dtype):
   raise TypeError("dtype {0} of on_value does not match "
   "dtype parameter {1}".format(on_dtype, dtype))
  if (off_exists and off_dtype != dtype):
   raise TypeError("dtype {0} of off_value does not match "
   "dtype parameter {1}".format(off_dtype, dtype))
  else:
  # dtype not provided: automatically assign it
  dtype = on_dtype if on_exists else off_dtype
 elif dtype is None:
  # None of on_value, off_value, or dtype provided. Default 
  dtype to float32
  dtype = dtypes.float32
 if not on_exists:
  # on_value not provided: assign to value 1 of type dtype
  on_value = ops.convert_to_tensor(1, dtype, name="
  on_value")
  on_dtype = dtype
 if not off_exists:
  # off_value not provided: assign to value 0 of type dtype
  off_value = ops.convert_to_tensor(0, dtype, name="
  off_value")
  off_dtype = dtype
 if on_dtype != off_dtype:
  raise TypeError("dtype {0} of on_value does not match "
  "dtype {1} of off_value".format(on_dtype, off_dtype))
 return gen_array_ops._one_hot(indices, depth, on_value, 
  off_value, axis, 
  name)
 
 
Enter: apply completion.
 + Ctrl: remove arguments and replace current word (no Pop-
 up focus).
 + Shift: remove arguments (requires Pop-up focus).
import tensorflow as tf
import numpy as np
data = np.linspace(0,9,10)
label = tf.one_hot(data,10)
with tf.Session() as sess:
 print(data)
 print(sess.run(label))

Tensorflow实现将标签变为one-hot形式

补充知识:数据清洗—制作one-hot

使用pandas进行one-hot编码

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)

pandas中get_dummies()函数可以将字段进行编码,转换为01形式,其中prefix可以为每个新展开的列名添加前缀。

但是,笔者发现它较易使用在数据为每一列为单独的字符:

Tensorflow实现将标签变为one-hot形式

df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]})

## one-hot
df_dumm = pd.get_dummies(df)

Tensorflow实现将标签变为one-hot形式

my_one_hot

但是对于数据为下面形式的可就不能直接转换了,需要先预处理一下,之后转换为one-hot形式:

Tensorflow实现将标签变为one-hot形式

我的做法是:

## tqdm_notebook可以导入tqdm包来使用
def one_hot_my(dataframe, attri):
 sample_attri_list = []
 sample_attri_loc_dic = {}
 loc = 0
 dataframe[attri] = dataframe[attri].astype(str)
 for attri_id in tqdm_notebook(dataframe[attri]):
  attri_id_pro = attri_id.strip().split(',')
  for key in attri_id_pro:
   if key not in sample_attri_loc_dic.keys():
    sample_attri_loc_dic[key] = loc
    loc+=1
  sample_attri_list.append(attri_id_pro)
 print("开始完成one-hot.......")  
 one_hot_attri = []
 for attri_id in tqdm_notebook(sample_attri_list):
  array = [0 for _ in range(len(sample_attri_loc_dic.keys()))]
  for key in attri_id:
   array[sample_attri_loc_dic[key]] = 1
  one_hot_attri.append(array)
 print("封装成dataframe.......") 
 ## 封装成dataframe
 columns = [attri+x for x in sample_attri_loc_dic.keys()]
 one_hot_rig_id_df = pd.DataFrame(one_hot_attri,columns=columns)
 return one_hot_rig_id_df

对属性二值化可以采用:

## 对属性进行二值化
def binary_apply(key, attri, dataframe):
 key_modify = 'is_' + ''.join(lazy_pinyin(key)) + '_' + attri
 print(key_modify)
 dataframe[key_modify] = dataframe.apply(lambda x:1 if x[attri]== key else 0, axis=1)
 return dataframe

对字符进行编码,将字符转换为0,1,2…:

## 对字符进行编码
# columns = ['job', 'marital', 'education','default','housing' ,'loan','contact', 'poutcome']
def encode_info(dataframe, columns):
 for col in columns:
  print(col)
  dataframe[col] = pd.factorize(dataframe[col])[0]
 return dataframe

Tensorflow实现将标签变为one-hot形式

以上这篇Tensorflow实现将标签变为one-hot形式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
跟老齐学Python之dict()的操作方法
Sep 24 Python
玩转python爬虫之cookie使用方法
Feb 17 Python
详解Python中使用base64模块来处理base64编码的方法
Jul 01 Python
详解Python map函数及Python map()函数的用法
Nov 16 Python
Sanic框架安装与简单入门示例
Jul 16 Python
PyQt5基本控件使用详解:单选按钮、复选框、下拉框
Aug 05 Python
TensorFlow基于MNIST数据集实现车牌识别(初步演示版)
Aug 05 Python
pandas中遍历dataframe的每一个元素的实现
Oct 23 Python
python 基于dlib库的人脸检测的实现
Nov 08 Python
浅谈python 调用open()打开文件时路径出错的原因
Jun 05 Python
Python实现数字的格式化输出
Aug 01 Python
Python使用urlretrieve实现直接远程下载图片的示例代码
Aug 17 Python
Python selenium爬取微博数据代码实例
May 22 #Python
python实现文法左递归的消除方法
May 22 #Python
使用Django搭建网站实现商品分页功能
May 22 #Python
Tensorflow卷积实现原理+手写python代码实现卷积教程
May 22 #Python
Python实现发票自动校核微信机器人的方法
May 22 #Python
基于django micro搭建网站实现加水印功能
May 22 #Python
基于Tensorflow一维卷积用法详解
May 22 #Python
You might like
thinkphp 手机号和用户名同时登录
2017/01/20 PHP
javascript Discuz代码中的msn聊天小功能
2008/05/25 Javascript
Javascript跨域请求的4种解决方式
2013/03/17 Javascript
图片轮换效果实现代码(点击按钮停止执行)
2013/04/12 Javascript
IE下JS读取xml文件示例代码
2013/08/05 Javascript
js使用removeChild方法动态删除div元素
2014/08/01 Javascript
跟我学习javascript的var预解析与函数声明提升
2015/11/16 Javascript
基于jquery实现表格无刷新分页
2016/01/07 Javascript
利用JS实现页面删除并重新排序功能
2016/12/09 Javascript
JavaScript对象封装的简单实现方法(3种方法)
2017/01/03 Javascript
Angular实现跨域(搜索框的下拉列表)
2017/02/16 Javascript
bootstrap table插件的分页与checkbox使用详解
2017/07/23 Javascript
Vue.js结合bootstrap前端实现分页和排序效果
2018/12/29 Javascript
js实现GIF动图分解成多帧图片上传
2019/10/24 Javascript
JS数组Reduce方法功能与用法实例详解
2020/04/29 Javascript
PyCharm的设置方法和第一个Python程序的建立
2019/01/16 Python
python3+PyQt5 自定义窗口部件--使用窗口部件样式表的方法
2019/06/26 Python
python虚拟环境完美部署教程
2019/08/06 Python
利用python list完成最简单的DB连接池方法
2019/08/09 Python
Tensorflow获取张量Tensor的具体维数实例
2020/01/19 Python
Python常用数字处理基本操作汇总
2020/09/10 Python
用python批量移动文件
2021/01/14 Python
HTML5验证以及日期显示的实现详解
2013/07/05 HTML / CSS
英国最红的高街时尚品牌:Topshop
2016/08/05 全球购物
Melijoe美国官网:法国奢侈童装购物网站
2017/04/19 全球购物
意大利领先的奢侈品在线时装零售商:MCLABELS
2020/10/13 全球购物
数百万免费的图形资源:Freepik
2020/09/21 全球购物
LINUX下线程,GDI类的解释
2012/04/17 面试题
学生个人的自我评价分享
2013/11/05 职场文书
学生会竞选演讲稿
2014/04/24 职场文书
党员创先争优心得体会
2014/09/11 职场文书
红领巾广播站广播稿
2014/10/19 职场文书
人事行政助理岗位职责
2015/04/11 职场文书
2015年市场部工作总结
2015/04/30 职场文书
2015仓库保管员年终工作总结
2015/05/13 职场文书
亲情作文之母爱
2019/09/25 职场文书