python+gdal+遥感图像拼接(mosaic)的实例


Posted in Python onMarch 10, 2020

作为摄影测量与遥感的从业者,笔者最近开始深入研究gdal,为工作打基础!个人觉得gdal也是没有什么技术含量,调用别人的api。但是想想这也是算法应用的一个技能,多学无害!

关于遥感图像的镶嵌,主要分为6大步骤:

step1:

1)对于每一幅图像,计算其行与列;

2)获取左上角X,Y

3)获取像素宽和像素高

4)计算max X 和 min Y,切记像素高是负值

maxX1 = minX1 + (cols1 * pixelWidth)
minY1 = maxY1 + (rows1 * pixelHeight)

step2 :计算输出图像的min X ,max X,min Y,max Y

minX = min(minX1, minX2, …)
maxX = max(maxX1, maxX2, …)

y坐标同理

step3:计算输出图像的行与列

cols = int((maxX ? minX) / pixelWidth)
rows = int((maxY ? minY) / abs(pixelHeight)

step 4:创建一个输出图像

driver.create()

step 5:

1)计算每幅图像左上角坐标在新图像的偏移值

2)依次读入每幅图像的数据并利用1)计算的偏移值将其写入新图像中

step6 :对于输出图像

1)刷新磁盘并计算统计值

2)设置输出图像的几何和投影信息

3)建立金字塔

下面附上笔者的代码:

#mosica 两张图像
import os, sys, gdal
from gdalconst import *
os.chdir('c:/temp/****')#改变文件夹路径
# 注册gdal(required)
gdal.AllRegister()

# 读入第一幅图像
ds1 = gdal.Open('**.img')
band1 = ds1.GetRasterBand(1)
rows1 = ds1.RasterYSize
cols1 = ds1.RasterXSize

# 获取图像角点坐标
transform1 = ds1.GetGeoTransform()
minX1 = transform1[0]
maxY1 = transform1[3]
pixelWidth1 = transform1[1]
pixelHeight1 = transform1[5]#是负值(important)
maxX1 = minX1 + (cols1 * pixelWidth1)
minY1 = maxY1 + (rows1 * pixelHeight1)

# 读入第二幅图像
ds2 = gdal.Open('**.img')
band2 = ds2.GetRasterBand(1)
rows2 = ds2.RasterYSize
cols2 = ds2.RasterXSize

# 获取图像角点坐标
transform2 = ds2.GetGeoTransform()
minX2 = transform2[0]
maxY2 = transform2[3]
pixelWidth2 = transform2[1]
pixelHeight2 = transform2[5]
maxX2 = minX2 + (cols2 * pixelWidth2)
minY2 = maxY2 + (rows2 * pixelHeight2)

# 获取输出图像坐标
minX = min(minX1, minX2)
maxX = max(maxX1, maxX2)
minY = min(minY1, minY2)
maxY = max(maxY1, maxY2)

#获取输出图像的行与列
cols = int((maxX - minX) / pixelWidth1)
rows = int((maxY - minY) / abs(pixelHeight1))

# 计算图1左上角的偏移值(在输出图像中)
xOffset1 = int((minX1 - minX) / pixelWidth1)
yOffset1 = int((maxY1 - maxY) / pixelHeight1)

# 计算图2左上角的偏移值(在输出图像中)
xOffset2 = int((minX2 - minX) / pixelWidth1)
yOffset2 = int((maxY2 - maxY) / pixelHeight1)

# 创建一个输出图像
driver = ds1.GetDriver()
dsOut = driver.Create('mosiac.img', cols, rows, 1, band1.DataType)#1是bands,默认
bandOut = dsOut.GetRasterBand(1)

# 读图1的数据并将其写到输出图像中
data1 = band1.ReadAsArray(0, 0, cols1, rows1)
bandOut.WriteArray(data1, xOffset1, yOffset1)

#读图2的数据并将其写到输出图像中
data2 = band2.ReadAsArray(0, 0, cols2, rows2)
bandOut.WriteArray(data2, xOffset2, yOffset2)
''' 写图像步骤'''
# 统计数据
bandOut.FlushCache()#刷新磁盘
stats = bandOut.GetStatistics(0, 1)#第一个参数是1的话,是基于金字塔统计,第二个
#第二个参数是1的话:整幅图像重度,不需要统计
# 设置输出图像的几何信息和投影信息
geotransform = [minX, pixelWidth1, 0, maxY, 0, pixelHeight1]
dsOut.SetGeoTransform(geotransform)
dsOut.SetProjection(ds1.GetProjection())

# 建立输出图像的金字塔
gdal.SetConfigOption('HFA_USE_RRD', 'YES')
dsOut.BuildOverviews(overviewlist=[2,4,8,16])#4层

补充知识:运用Python的第三方库:GDAL进行遥感数据的读写

0 背景及配置环境

0.1 背景

GDAL(Geospatial Data Abstraction Library)是一个在X/MIT许可协议下的开源栅格空间数据转换库。它利用抽象数据模型来表达所支持的各种文件格式。它还有一系列命令行工具来进行数据转换和处理。

这个开源栅格空间数据转换库拥有许多和其他语言的接口,对于python,他有对应的第三方包GDAL,下载安装已在上篇文章中提到。

目的: 可以使用Python的第三方包:GDAL进行遥感数据的读写,方便批处理。

0.2 配置环境

电脑系统: win7x64
Python版本: 3.6.4
GDAL版本: 2.3.2

1 读

1.1 TIFF格式

标签图像文件格式(Tag Image File Format,简写为TIFF)是一种灵活的位图格式,主要用来存储包括照片和艺术图在内的图像。它最初由Aldus公司与微软公司一起为PostScript打印开发。TIFF与JPEG和PNG一起成为流行的高位彩色图像格式。

TIFF文件以.tif为扩展名。

def tif_read(tifpath, bandnum):
  """
  Use GDAL to read data and transform them into arrays.
  :param tifpath:tif文件的路径
  :param bandnum:需要读取的波段
  :return:该波段的数据,narray格式。len(narray)是行数,len(narray[0])列数
  """
  image = gdal.Open(tifpath) # 打开该图像
  if image == None:
   print(tifpath + "该tif不能打开!")
   return
  lie = image.RasterXSize # 栅格矩阵的列数
  hang = image.RasterYSize # 栅格矩阵的行数
  im_bands = image.RasterCount # 波段数
  im_proj = image.GetProjection() # 获取投影信息
  im_geotrans = image.GetGeoTransform() # 仿射矩阵
  print('该tif:{}个行,{}个列,{}层波段, 取出第{}层.'.format(hang, lie, im_bands, bandnum))
  band = image.GetRasterBand(bandnum) # Get the information of band num.
  band_array = band.ReadAsArray(0,0,lie,hang) # Getting data from zeroth rows and 0 columns
  # band_df = pd.DataFrame(band_array)
  del image # 减少冗余
  return band_array, im_proj, im_geotrans

2 写

2.1 TIFF格式

TIFF格式的数据格式有:Byete、int16、uint16、int32、uint32、float32、float64等7余种。

首先,要判断数据的格式,才能按需求写出。

def tif_write(self, filename, im_data, im_proj, im_geotrans):
  """
  gdal数据类型包括
  gdal.GDT_Byte,
  gdal.GDT_UInt16, gdal.GDT_Int16, gdal.GDT_UInt32, gdal.GDT_Int32,
  gdal.GDT_Float32, gdal.GDT_Float64
  :param filename: 存出文件名
  :param im_data: 输入数据
  :param im_proj: 投影信息
  :param im_geotrans: 放射变换信息
  :return: 0 
  """
  if 'int8' in im_data.dtype.name: # 判断栅格数据的数据类型
   datatype = gdal.GDT_Byte
  elif 'int16' in im_data.dtype.name:
   datatype = gdal.GDT_UInt16
  else:
   datatype = gdal.GDT_Float32
  # 判读数组维数
  if len(im_data.shape) == 3:
   im_bands, im_height, im_width = im_data.shape
  else:
   im_bands, (im_height, im_width) = 1,im_data.shape # 多维或1.2维
  #创建文件
  driver = gdal.GetDriverByName("GTiff")   #数据类型必须有,因为要计算需要多大内存空间
  dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)
  dataset.SetGeoTransform(im_geotrans)    #写入仿射变换参数
  dataset.SetProjection(im_proj)     #写入投影
  if im_bands == 1:
   dataset.GetRasterBand(1).WriteArray(im_data) #写入数组数据
  else:
   for i in range(im_bands):
    dataset.GetRasterBand(i+1).WriteArray(im_data[i])
  del dataset

3 展示

3.1 TIFF格式

# 这个展示的效果并不是太好,当做示意图用
 def tif_display(self,im_data):
  """
  :param im_data: 影像数据,narray
  :return: 展出影像
  """
  # plt.imshow(im_data,'gray') # 必须规定为显示的为什么图像
  plt.imshow(im_data) # 必须规定为显示的为什么图像
  plt.xticks([]), plt.yticks([]) # 隐藏坐标线
  plt.show() # 显示出来,不要也可以,但是一般都要了

以上这篇python+gdal+遥感图像拼接(mosaic)的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中的for循环
Sep 28 Python
tensorflow2.0与tensorflow1.0的性能区别介绍
Feb 07 Python
Python列表去重复项的N种方法(实例代码)
May 12 Python
python中os包的用法
Jun 01 Python
详解Python IO口多路复用
Jun 17 Python
python如何实现图片压缩
Sep 11 Python
通过实例解析Python文件操作实现步骤
Sep 21 Python
Django路由层URLconf作用及原理解析
Sep 24 Python
利用Python实现最小二乘法与梯度下降算法
Feb 21 Python
利用Python判断整数是否是回文数的3种方法总结
Jul 07 Python
Python中的datetime包与time包包和模块详情
Feb 28 Python
关于Python中进度条的六个实用技巧分享
Apr 05 Python
python获取栅格点和面值的实现
Mar 10 #Python
Python列表切片常用操作实例解析
Mar 10 #Python
Python numpy多维数组实现原理详解
Mar 10 #Python
python中使用you-get库批量在线下载bilibili视频的教程
Mar 10 #Python
Python字符串hashlib加密模块使用案例
Mar 10 #Python
Python中求对数方法总结
Mar 10 #Python
Python标准库shutil模块使用方法解析
Mar 10 #Python
You might like
DC最新动画电影:《战争之子》为何内容偏激,毁了一个不错的漫画
2020/04/09 欧美动漫
Joomla实现组件中弹出一个模式(modal)窗口的方法
2016/05/04 PHP
PHP实现路由映射到指定控制器
2016/08/13 PHP
thinkphp3.2实现在线留言提交验证码功能
2017/07/19 PHP
PHP大文件分片上传的实现方法
2018/10/28 PHP
基于PHP+mysql实现新闻发布系统的开发
2020/08/06 PHP
Nigma vs Alliance BO5 第三场2.14
2021/03/10 DOTA
Three.js源码阅读笔记(光照部分)
2012/12/27 Javascript
JavaScript中的关键字"VAR"使用详解 分享
2013/07/31 Javascript
jquery实现弹出窗口效果的实例代码
2013/11/28 Javascript
深入剖析JavaScript中的枚举功能
2014/03/06 Javascript
jQuery动态星级评分效果实现方法
2015/08/06 Javascript
jquery实现表单输入时提示文字滑动向上效果
2015/08/10 Javascript
js实现仿Discuz文本框弹出层效果
2015/08/13 Javascript
jQuery 选择同时包含两个class的元素的实现方法
2016/06/01 Javascript
jQuery实现磁力图片跟随效果完整示例
2016/09/16 Javascript
微信小程序 UI布局常用技巧整理总结
2016/12/05 Javascript
vue-cli创建的项目,配置多页面的实现方法
2018/03/15 Javascript
webpack 打包压缩js和css的方法示例
2018/03/20 Javascript
在angular 6中使用 less 的实例代码
2018/05/13 Javascript
在Vue methods中调用filters里的过滤器实例
2018/08/30 Javascript
微信小程序实现留言功能
2018/10/31 Javascript
微信小程序如何调用新闻接口实现列表循环
2019/07/02 Javascript
基于js实现数组相邻元素上移下移
2020/05/19 Javascript
Python使用win32com模块实现数据库表结构自动生成word表格的方法
2018/07/17 Python
pygame库实现俄罗斯方块小游戏
2019/10/29 Python
不到20行实现Python代码即可制作精美证件照
2020/04/24 Python
python 将Excel转Word的示例
2021/03/02 Python
CSS3移动端vw+rem不依赖JS实现响应式布局的方法
2019/01/23 HTML / CSS
非洲NO.1网上商店:Jumia肯尼亚
2016/08/18 全球购物
法律进社区实施方案
2014/03/21 职场文书
电子专业求职信
2014/06/19 职场文书
我的职业生涯规划:打造自己的运动帝国
2014/09/18 职场文书
nginx如何将http访问的网站改成https访问
2021/03/31 Servers
React中的Context应用场景分析
2021/06/11 Javascript
教你使用Python获取QQ音乐某个歌手的歌单
2022/04/03 Python