python库skimage给灰度图像染色的方法示例


Posted in Python onApril 27, 2020

灰度图像染成红色和黄色

# 1.将灰度图像转换为RGB图像
image = color.gray2rgb(grayscale_image)
# 2.保留红色分量和黄色分量
red_multiplier = [1, 0, 0]
yellow_multiplier = [1, 1, 0]
# 3.显示图像
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4),
                sharex=True, sharey=True)
ax1.imshow(red_multiplier * image)
ax2.imshow(yellow_multiplier * image)

python库skimage给灰度图像染色的方法示例

HSV图像,H从0到1表示的颜色

hue_gradient = np.linspace(0, 1)
# print(hue_gradient.shape) # output:(50,)
hsv = np.ones(shape=(1, len(hue_gradient), 3), dtype=float)
hsv[:, :, 0] = hue_gradient

all_hues = color.hsv2rgb(hsv)

fig, ax = plt.subplots(figsize=(5, 2))
# Set image extent so hues go from 0 to 1 and the image is a nice aspect ratio.
ax.imshow(all_hues, extent=(0, 1, 0, 0.2))
ax.set_axis_off()

python库skimage给灰度图像染色的方法示例

将灰度图像染成不同的颜色

hue_rotations = np.linspace(0, 1, 6)

fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=True)

for ax, hue in zip(axes.flat, hue_rotations):
  # Turn down the saturation to give it that vintage look.
  tinted_image = colorize(image, hue, saturation=0.3)
  ax.imshow(tinted_image, vmin=0, vmax=1)
  ax.set_axis_off()
fig.tight_layout()

python库skimage给灰度图像染色的方法示例

完整代码

"""
=========================
Tinting gray-scale images
=========================

It can be useful to artificially tint an image with some color, either to
highlight particular regions of an image or maybe just to liven up a grayscale
image. This example demonstrates image-tinting by scaling RGB values and by
adjusting colors in the HSV color-space.

In 2D, color images are often represented in RGB---3 layers of 2D arrays, where
the 3 layers represent (R)ed, (G)reen and (B)lue channels of the image. The
simplest way of getting a tinted image is to set each RGB channel to the
grayscale image scaled by a different multiplier for each channel. For example,
multiplying the green and blue channels by 0 leaves only the red channel and
produces a bright red image. Similarly, zeroing-out the blue channel leaves
only the red and green channels, which combine to form yellow.
"""

import matplotlib.pyplot as plt
from skimage import data
from skimage import color
from skimage import img_as_float

grayscale_image = img_as_float(data.camera()[::2, ::2])
image = color.gray2rgb(grayscale_image)

red_multiplier = [1, 0, 0]
yellow_multiplier = [1, 1, 0]

fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4),
                sharex=True, sharey=True)
ax1.imshow(red_multiplier * image)
ax2.imshow(yellow_multiplier * image)

######################################################################
# In many cases, dealing with RGB values may not be ideal. Because of that,
# there are many other `color spaces`_ in which you can represent a color
# image. One popular color space is called HSV, which represents hue (~the
# color), saturation (~colorfulness), and value (~brightness). For example, a
# color (hue) might be green, but its saturation is how intense that green is
# ---where olive is on the low end and neon on the high end.
#
# In some implementations, the hue in HSV goes from 0 to 360, since hues wrap
# around in a circle. In scikit-image, however, hues are float values from 0
# to 1, so that hue, saturation, and value all share the same scale.
#
# .. _color spaces:
#   https://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses
#
# Below, we plot a linear gradient in the hue, with the saturation and value
# turned all the way up:
import numpy as np

hue_gradient = np.linspace(0, 1)
# print(hue_gradient.shape) # output:(50,)
hsv = np.ones(shape=(1, len(hue_gradient), 3), dtype=float)
hsv[:, :, 0] = hue_gradient

all_hues = color.hsv2rgb(hsv)

fig, ax = plt.subplots(figsize=(5, 2))
# Set image extent so hues go from 0 to 1 and the image is a nice aspect ratio.
ax.imshow(all_hues, extent=(0, 1, 0, 0.2))
ax.set_axis_off()

######################################################################
# Notice how the colors at the far left and far right are the same. That
# reflects the fact that the hues wrap around like the color wheel (see HSV_
# for more info).
#
# .. _HSV: https://en.wikipedia.org/wiki/HSL_and_HSV
#
# Now, let's create a little utility function to take an RGB image and:
#
# 1. Transform the RGB image to HSV 2. Set the hue and saturation 3.
# Transform the HSV image back to RGB


def colorize(image, hue, saturation=1):
  """ Add color of the given hue to an RGB image.

  By default, set the saturation to 1 so that the colors pop!
  """
  hsv = color.rgb2hsv(image)
  hsv[:, :, 1] = saturation
  hsv[:, :, 0] = hue
  return color.hsv2rgb(hsv)


######################################################################
# Notice that we need to bump up the saturation; images with zero saturation
# are grayscale, so we need to a non-zero value to actually see the color
# we've set.
#
# Using the function above, we plot six images with a linear gradient in the
# hue and a non-zero saturation:

hue_rotations = np.linspace(0, 1, 6)

fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=True)

for ax, hue in zip(axes.flat, hue_rotations):
  # Turn down the saturation to give it that vintage look.
  tinted_image = colorize(image, hue, saturation=0.3)
  ax.imshow(tinted_image, vmin=0, vmax=1)
  ax.set_axis_off()
fig.tight_layout()

######################################################################
# You can combine this tinting effect with numpy slicing and fancy-indexing
# to selectively tint your images. In the example below, we set the hue of
# some rectangles using slicing and scale the RGB values of some pixels found
# by thresholding. In practice, you might want to define a region for tinting
# based on segmentation results or blob detection methods.

from skimage.filters import rank

# Square regions defined as slices over the first two dimensions.
top_left = (slice(100),) * 2
bottom_right = (slice(-100, None),) * 2

sliced_image = image.copy()
sliced_image[top_left] = colorize(image[top_left], 0.82, saturation=0.5)
sliced_image[bottom_right] = colorize(image[bottom_right], 0.5, saturation=0.5)

# Create a mask selecting regions with interesting texture.
noisy = rank.entropy(grayscale_image, np.ones((9, 9)))
textured_regions = noisy > 4
# Note that using `colorize` here is a bit more difficult, since `rgb2hsv`
# expects an RGB image (height x width x channel), but fancy-indexing returns
# a set of RGB pixels (# pixels x channel).
masked_image = image.copy()
masked_image[textured_regions, :] *= red_multiplier

fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=(8, 4),
                sharex=True, sharey=True)
ax1.imshow(sliced_image)
ax2.imshow(masked_image)

plt.show()

######################################################################
# For coloring multiple regions, you may also be interested in
# `skimage.color.label2rgb http://scikit-
# image.org/docs/0.9.x/api/skimage.color.html#label2rgb`_.

python库skimage给灰度图像染色的方法示例

到此这篇关于python库skimage给灰度图像染色的方法示例的文章就介绍到这了,更多相关python 灰度图像染色内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python 爬虫爬取指定博客的所有文章
Feb 17 Python
Python在线运行代码助手
Jul 15 Python
使用Python操作excel文件的实例代码
Oct 15 Python
浅谈使用Python变量时要避免的3个错误
Oct 30 Python
对python操作kafka写入json数据的简单demo分享
Dec 27 Python
浅谈pandas筛选出表中满足另一个表所有条件的数据方法
Feb 08 Python
Python玩转Excel的读写改实例
Feb 22 Python
PyQt5实现简易电子词典
Jun 25 Python
pytorch 修改预训练model实例
Jan 18 Python
基于Numba提高python运行效率过程解析
Mar 02 Python
PyTorch安装与基本使用详解
Aug 31 Python
python 开心网和豆瓣日记爬取的小爬虫
May 29 Python
python实现密度聚类(模板代码+sklearn代码)
Apr 27 #Python
Django中文件上传和文件访问微项目的方法
Apr 27 #Python
详解Python中namedtuple的使用
Apr 27 #Python
Python PyQt5运行程序把输出信息展示到GUI图形界面上
Apr 27 #Python
使用python实现微信小程序自动签到功能
Apr 27 #Python
Python日志:自定义输出字段 json格式输出方式
Apr 27 #Python
如何使用PyCharm将代码上传到GitHub上(图文详解)
Apr 27 #Python
You might like
无数据库的详细域名查询程序PHP版(2)
2006/10/09 PHP
PHP JSON格式数据交互实例代码详解
2011/01/13 PHP
PHP导入Excel到MySQL的方法
2011/04/23 PHP
php 获取页面中指定内容的实现类
2014/01/23 PHP
php实现设计模式中的单例模式详解
2014/10/11 PHP
PHP的serialize序列化数据以及JSON格式化数据分析
2015/10/10 PHP
php使用glob函数遍历文件和目录详解
2016/09/23 PHP
Nigma vs Alliance BO5 第四场2.14
2021/03/10 DOTA
HTA版JSMin(省略修饰语若干)基于javascript语言编写
2009/12/24 Javascript
如何通过javascript操作web控件的自定义属性
2013/11/25 Javascript
js中arguments,caller,callee,apply的用法小结
2014/01/28 Javascript
利用javascript实现全部删或清空所选的操作
2014/05/27 Javascript
JQuery实现当鼠标停留在某区域3秒后自动执行
2014/09/09 Javascript
node.js中的fs.readSync方法使用说明
2014/12/17 Javascript
angularjs学习笔记之简单介绍
2015/09/26 Javascript
Jquery 全选反选实例代码
2015/11/19 Javascript
浅析node连接数据库(express+mysql)
2015/11/30 Javascript
jquery ui dialog替代confirm实例分析
2016/01/25 Javascript
微信小程序 navigation API实例详解
2016/10/02 Javascript
Ajax异步获取html数据中包含js方法无效的解决方法
2017/02/20 Javascript
vue axios用法教程详解
2017/07/23 Javascript
说说如何在Vue.js中实现数字输入组件的方法
2019/01/08 Javascript
Vue实现push数组并删除的例子
2019/11/01 Javascript
JavaScript构造函数原理及实现流程解析
2020/11/19 Javascript
python实现通过代理服务器访问远程url的方法
2015/04/29 Python
python通过opencv实现批量剪切图片
2017/11/13 Python
Python实现的微信好友数据分析功能示例
2018/06/21 Python
python得到单词模式的示例
2018/10/15 Python
Python中logging日志库实例详解
2020/02/19 Python
python mysql自增字段AUTO_INCREMENT值的修改方式
2020/05/18 Python
python PIL模块的基本使用
2020/09/29 Python
英国领先的电视购物零售商:Ideal World
2019/03/18 全球购物
员工自我鉴定范文
2013/10/06 职场文书
生产经理的自我评价分享
2013/11/07 职场文书
2014财产信托协议书范本
2014/11/18 职场文书
中国十大神话动漫电影排行榜 哪吒登顶 白蛇缘起排第七
2022/03/21 国漫