python可视化篇之流式数据监控的实现


Posted in Python onAugust 07, 2019

preface

流式数据的监控,以下主要是从算法的呈现出发,提供一种python的实现思路

其中:
1.python是2.X版本
2.提供两种实现思路,一是基于matplotlib的animation,一是基于matplotlib的ion

话不多说,先了解大概的效果,如下:

python可视化篇之流式数据监控的实现

一、一点构思

在做此流数据输出可视化前,一直在捣鼓nupic框架,其内部HTM算法主要是一种智能的异常检测算法,是目前AI框架中垂直领域下的一股清流,但由于其实现的例子对应的流数据展示并非我想要的,故此借鉴后自己重新写了一个,主要是达到三个目的,一是展示真实数据的波动,二是展示各波动的异常得分,三是罗列异常的点。 

上述的输出结构并非重点,重点是其实时更新的机制,了解后即可自行定义。另,js对于这种流数据展示应该不难,所以本文主要立足的是算法的呈现角度以及python的实现。

二、matplotlib animation实现思路

http://matplotlib.org/api/animation_api.html 链接是matplotlib animation的官方api文档

(一)、骨架与实时更新

animation翻译过来就是动画,其动画展示核心主要有三个:1是动画的骨架先搭好,就是图像的边边框框这些,2是更新的过程,即传入实时数据时图形的变化方法,3是FuncAnimation方法结尾。

下面以一个小例子做进一步说明: 

1.对于动画的骨架:

# initial the figure.
x = []
y = []
fig = plt.figure(figsize=(18, 8), facecolor="white")
ax1 = fig.add_subplot(111)
p1, = ax1.plot(x, y, linestyle="dashed", color="red")

以上分别对应初始化空数据,初始化图形大小和背景颜色,插入子图(三个数字分别表示几行几列第几个位置),初始化图形(数据为空)。

import numpy as np
x = np.arange(0, 1000, 1)
y = np.random.normal(100, 10, 1000)

随机生成一些作图数据,下面定义update过程。

2.对于更新过程:

def update(i):
  x.append(xs[i])
  y.append(ys[i])
  ax1.set_xlim(min(x),max(x)+1)
  ax1.set_ylim(min(y),max(y)+1)
  p1.set_data(x,y)
  ax1.figure.canvas.draw()
  return p1

上述定义更新函数,参数i为每轮迭代从FuncAnimation方法frames参数传进来的数值,frames参数的指定下文会进一步说,x/y通过相应更新之后,对图形的x/y轴大小做相应的重设,再把数据通过set_data传进图形,注意ax1和p1的区别,最后再把上述的变化通过draw()方法绘制到界面上,返回p1给FuncAnimation方法。

3.对于FuncAnimation方法:

ani = FuncAnimation(fig=fig,func=update,frames=len(xs),interval=1)
plt.show()

FuncAnimation方法主要是与update函数做交互,将frames参数对应的数据逐条传进update函数,再由update函数返回的图形覆盖FuncAnimation原先的图形,fig参数即为一开始对应的参数,interval为每次更新的时间间隔,还有其他一些参数如blit=True控制图形精细,当界面较多子图时,为True可以使得看起来不会太卡,关键是frames参数,下面是官方给出的注释:

python可视化篇之流式数据监控的实现

可为迭代数,可为函数,也可为空,上面我指定为数组的长度,其迭代则从0开始到最后该数值停止。

该例子最终呈现的效果如下:

python可视化篇之流式数据监控的实现

了解大概的实现,细节就不在这里多说了。

(二)、animation的优缺点

animation的绘制的结果相比于下文的ion会更加的细腻,主要体现在FuncAnimation方法的一些参数的控制上。但是缺点也是明显,就是必须先有指定的数据或者指定的数据大小,显然这样对于预先无法知道数据的情况没法处理。所以换一种思路,在matplotlib ion打开的模式下,每次往模板插入数据都会进行相应的更新,具体看第二部分。

三、matplotlib ion实现思路

(一)、实时更新

matplotlib ion的实现也主要是三个核心,1是打开ion,2是实时更新机制,3是呈现在界面上。

1.对于打开ion:

ion全称是 interactive on(交互打开),其意为打开一个图形的交互接口,之后每次绘图都在之前打开的面板上操作,举个例子:

import matplotlib.pyplot as plt
plt.ion()
fig = plt.figure()
ax1 = fig.add_subplot(111)
line, = ax1.plot(t, v, linestyle="-", color="r")

打开交互接口,初始化图形。

2.对于实时更新机制:

import numpy as np
ys = np.random.normal(100, 10, 1000)

def p(a, b):
  t.append(a)
  v.append(b)
  ax1.set_xlim(min(t), max(t) + 1)
  ax1.set_ylim(min(v), max(v) + 1)
  line.set_data(t, v)
  plt.pause(0.001)
  ax1.figure.canvas.draw()

for i in xrange(len(ys)):
  p(i, ys[i])

随机生成一组数据,定义作图函数p(包含pause表示暂定时延,最好有,防止界面卡死),传入数据实时更新。

3.对于界面最终呈现

plt.ioff()
plt.show()

ioff是关闭交互模式,就像open打开文件产生的句柄,最好也有个close关掉。

最终效果如下:

python可视化篇之流式数据监控的实现

(二)、ion的优缺点

animation可以在细节上控制比ion更加细腻,这也是ion没有的一点,但是单就无需预先指定数据这一点,ion也无疑是能把流数据做得更加好。

四、最后

贴一下两种方法在最开始那种图的做法,ion我定义成类,这样每次调用只需穿入参数就可以。

animation版本

# _*_ coding:utf-8 _*_

import os
import csv
import datetime
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from matplotlib.dates import DateFormatter
import matplotlib.ticker as ticker

# read the file
filePath = os.path.join(os.getcwd(), "data/anomalyDetect_output.csv")
file = open(filePath, "r")
allData = csv.reader(file)
# skip the first three columns
allData.next()
allData.next()
allData.next()
# cache the data
data = [line for line in allData]
# for i in data: print i

# take out the target value
timestamp = [line[0] for line in data]
value = [line[1:] for line in data]


# format the time style 2016-12-01 00:00:00
def timestampFormat(t):
  result = datetime.datetime.strptime(t, "%Y-%m-%d %H:%M:%S")
  return result


# take out the data
timestamp = map(timestampFormat, timestamp)
value_a = [float(x[0]) for x in value]
predict_a = [float(x[1]) for x in value]
anomalyScore_a = [float(x[2]) for x in value]

# initial the size of the figure
fig = plt.figure(figsize=(18, 8), facecolor="white")
fig.subplots_adjust(left=0.06, right=0.70)
ax1 = fig.add_subplot(2, 1, 1)
ax2 = fig.add_subplot(2, 1, 2)
ax3 = fig.add_axes([0.8, 0.1, 0.2, 0.8], frameon=False)

# initial plot
p1, = ax1.plot_date([], [], fmt="-", color="red", label="actual")
ax1.legend(loc="upper right", frameon=False)
ax1.grid(True)
p2, = ax2.plot_date([], [], fmt="-", color="red", label="anomaly score")
ax2.legend(loc="upper right", frameon=False)
ax2.axhline(0.8, color='black', lw=2)
# add the x/y label
ax2.set_xlabel("date time")
ax2.set_ylabel("anomaly score")
ax1.set_ylabel("value")
# add the table in ax3
col_labels = ["date time", 'actual value', 'predict value', 'anomaly score']
ax3.text(0.05, 0.99, "anomaly value table", size=12)
ax3.set_xticks([])
ax3.set_yticks([])

# axis format
dateFormat = DateFormatter("%m/%d %H:%M")
ax1.xaxis.set_major_formatter(ticker.FuncFormatter(dateFormat))
ax2.xaxis.set_major_formatter(ticker.FuncFormatter(dateFormat))


# define the initial function
def init():
  p1.set_data([], [])
  p2.set_data([], [])
  return p1, p2


# initial data for the update function
x1 = []
x2 = []
x1_2 = []
y1_2 = []
x1_3 = []
y1_3 = []
y1 = []
y2 = []
highlightList = []
turnOn = True
tableValue = [[0, 0, 0, 0]]


# update function
def stream(i):
  # update the main graph(contains actual value and predicted value)
  # add the data
  global turnOn, highlightList, ax3

  x1.append(timestamp[i])
  y1.append(value_a[i])
  # update the axis
  minAxis = max(x1) - datetime.timedelta(days=1)
  ax1.set_xlim(minAxis, max(x1))
  ax1.set_ylim(min(y1), max(y1))
  ax1.figure.canvas.draw()
  p1.set_data(x1, y1)

  # update the anomaly graph(contains anomaly score)
  x2.append(timestamp[i])
  y2.append(anomalyScore_a[i])
  ax2.set_xlim(minAxis, max(x2))
  ax2.set_ylim(min(y2), max(y2))

  # update the scatter
  if anomalyScore_a[i] >= 0.8:
    x1_3.append(timestamp[i])
    y1_3.append(value_a[i])
    ax1.scatter(x1_3, y1_3, s=50, color="black")

  # update the high light
  if anomalyScore_a[i] >= 0.8:
    highlightList.append(i)
    turnOn = True
  else:
    turnOn = False
  if len(highlightList) != 0 and turnOn is False:

    ax2.axvspan(timestamp[min(highlightList)] - datetime.timedelta(minutes=10),
          timestamp[max(highlightList)] + datetime.timedelta(minutes=10),
          color='r',
          edgecolor=None,
          alpha=0.2)
    highlightList = []
    turnOn = True
  p2.set_data(x2, y2)

  # add the table in ax3
  # update the anomaly tabel
  if anomalyScore_a[i] >= 0.8:
    ax3.remove()
    ax3 = fig.add_axes([0.8, 0.1, 0.2, 0.8], frameon=False)
    ax3.text(0.05, 0.99, "anomaly value table", size=12)
    ax3.set_xticks([])
    ax3.set_yticks([])
    tableValue.append([timestamp[i].strftime("%Y-%m-%d %H:%M:%S"), value_a[i], predict_a[i], anomalyScore_a[i]])
    if len(tableValue) >= 40: tableValue.pop(0)
    ax3.table(cellText=tableValue, colWidths=[0.35] * 4, colLabels=col_labels, loc=1, cellLoc="center")

  return p1, p2


# main animated function
anim = FuncAnimation(fig, stream, init_func=init, frames=len(timestamp), interval=0)

plt.show()
file.close()

ion版本

#! /usr/bin/python

import os
import csv
import datetime
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from matplotlib.dates import DateFormatter
import matplotlib.ticker as ticker


class streamDetectionPlot(object):
  """
  Anomaly plot output.
  """

  # initial the figure parameters.
  def __init__(self):
    # Turn matplotlib interactive mode on.
    plt.ion()
    # initial the plot variable.
    self.timestamp = []
    self.actualValue = []
    self.predictValue = []
    self.anomalyScore = []
    self.tableValue = [[0, 0, 0, 0]]
    self.highlightList = []
    self.highlightListTurnOn = True
    self.anomalyScoreRange = [0, 1]
    self.actualValueRange = [0, 1]
    self.predictValueRange = [0, 1]
    self.timestampRange = [0, 1]
    self.anomalyScatterX = []
    self.anomalyScatterY = []

    # initial the figure.
    global fig
    fig = plt.figure(figsize=(18, 8), facecolor="white")
    fig.subplots_adjust(left=0.06, right=0.70)
    self.actualPredictValueGraph = fig.add_subplot(2, 1, 1)
    self.anomalyScoreGraph = fig.add_subplot(2, 1, 2)
    self.anomalyValueTable = fig.add_axes([0.8, 0.1, 0.2, 0.8], frameon=False)

  # define the initial plot method.
  def initPlot(self):
    # initial two lines of the actualPredcitValueGraph.
    self.actualLine, = self.actualPredictValueGraph.plot_date(self.timestamp, self.actualValue, fmt="-",
                                 color="red", label="actual value")
    self.predictLine, = self.actualPredictValueGraph.plot_date(self.timestamp, self.predictValue, fmt="-",
                                  color="blue", label="predict value")
    self.actualPredictValueGraph.legend(loc="upper right", frameon=False)
    self.actualPredictValueGraph.grid(True)

    # initial two lines of the anomalyScoreGraph.
    self.anomalyScoreLine, = self.anomalyScoreGraph.plot_date(self.timestamp, self.anomalyScore, fmt="-",
                                 color="red", label="anomaly score")
    self.anomalyScoreGraph.legend(loc="upper right", frameon=False)
    self.baseline = self.anomalyScoreGraph.axhline(0.8, color='black', lw=2)

    # set the x/y label of the first two graph.
    self.anomalyScoreGraph.set_xlabel("datetime")
    self.anomalyScoreGraph.set_ylabel("anomaly score")
    self.actualPredictValueGraph.set_ylabel("value")

    # configure the anomaly value table.
    self.anomalyValueTableColumnsName = ["timestamp", "actual value", "expect value", "anomaly score"]
    self.anomalyValueTable.text(0.05, 0.99, "Anomaly Value Table", size=12)
    self.anomalyValueTable.set_xticks([])
    self.anomalyValueTable.set_yticks([])

    # axis format.
    self.dateFormat = DateFormatter("%m/%d %H:%M")
    self.actualPredictValueGraph.xaxis.set_major_formatter(ticker.FuncFormatter(self.dateFormat))
    self.anomalyScoreGraph.xaxis.set_major_formatter(ticker.FuncFormatter(self.dateFormat))


  # define the output method.
  def anomalyDetectionPlot(self, timestamp, actualValue, predictValue, anomalyScore):

    # update the plot value of the graph.
    self.timestamp.append(timestamp)
    self.actualValue.append(actualValue)
    self.predictValue.append(predictValue)
    self.anomalyScore.append(anomalyScore)

    # update the x/y range.
    self.timestampRange = [min(self.timestamp), max(self.timestamp)+datetime.timedelta(minutes=10)]
    self.actualValueRange = [min(self.actualValue), max(self.actualValue)+1]
    self.predictValueRange = [min(self.predictValue), max(self.predictValue)+1]

    # update the x/y axis limits
    self.actualPredictValueGraph.set_ylim(
      min(self.actualValueRange[0], self.predictValueRange[0]),
      max(self.actualValueRange[1], self.predictValueRange[1])
    )
    self.actualPredictValueGraph.set_xlim(
      self.timestampRange[1] - datetime.timedelta(days=1),
      self.timestampRange[1]
    )
    self.anomalyScoreGraph.set_xlim(
      self.timestampRange[1]- datetime.timedelta(days=1),
      self.timestampRange[1]
    )
    self.anomalyScoreGraph.set_ylim(
      self.anomalyScoreRange[0],
      self.anomalyScoreRange[1]
    )

    # update the two lines of the actualPredictValueGraph.
    self.actualLine.set_xdata(self.timestamp)
    self.actualLine.set_ydata(self.actualValue)
    self.predictLine.set_xdata(self.timestamp)
    self.predictLine.set_ydata(self.predictValue)

    # update the line of the anomalyScoreGraph.
    self.anomalyScoreLine.set_xdata(self.timestamp)
    self.anomalyScoreLine.set_ydata(self.anomalyScore)

    # update the scatter.
    if anomalyScore >= 0.8:
      self.anomalyScatterX.append(timestamp)
      self.anomalyScatterY.append(actualValue)
      self.actualPredictValueGraph.scatter(
        self.anomalyScatterX,
        self.anomalyScatterY,
        s=50,
        color="black"
      )

    # update the highlight of the anomalyScoreGraph.
    if anomalyScore >= 0.8:
      self.highlightList.append(timestamp)
      self.highlightListTurnOn = True
    else:
      self.highlightListTurnOn = False
    if len(self.highlightList) != 0 and self.highlightListTurnOn is False:
      self.anomalyScoreGraph.axvspan(
        self.highlightList[0] - datetime.timedelta(minutes=10),
        self.highlightList[-1] + datetime.timedelta(minutes=10),
        color="r",
        edgecolor=None,
        alpha=0.2
      )
      self.highlightList = []
      self.highlightListTurnOn = True

    # update the anomaly value table.
    if anomalyScore >= 0.8:
      # remove the table and then replot it
      self.anomalyValueTable.remove()
      self.anomalyValueTable = fig.add_axes([0.8, 0.1, 0.2, 0.8], frameon=False)
      self.anomalyValueTableColumnsName = ["timestamp", "actual value", "expect value", "anomaly score"]
      self.anomalyValueTable.text(0.05, 0.99, "Anomaly Value Table", size=12)
      self.anomalyValueTable.set_xticks([])
      self.anomalyValueTable.set_yticks([])
      self.tableValue.append([
        timestamp.strftime("%Y-%m-%d %H:%M:%S"),
        actualValue,
        predictValue,
        anomalyScore
      ])
      if len(self.tableValue) >= 40: self.tableValue.pop(0)
      self.anomalyValueTable.table(cellText=self.tableValue,
                     colWidths=[0.35] * 4,
                     colLabels=self.anomalyValueTableColumnsName,
                     loc=1,
                     cellLoc="center"
                     )

    # plot pause 0.0001 second and then plot the next one.
    plt.pause(0.0001)
    plt.draw()

  def close(self):
    plt.ioff()
    plt.show()

下面是ion版本的调用:

graph = stream_detection_plot.streamDetectionPlot()
graph.initPlot()

for i in xrange(len(timestamp)):
  graph.anomalyDetectionPlot(timestamp[i],value_a[i],predict_a[i],anomalyScore_a[i])

graph.close()

具体为实例化类,初始化图形,传入数据作图,关掉。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Flask框架的学习指南之开发环境搭建
Nov 20 Python
python绘制简单折线图代码示例
Dec 19 Python
python实现求最长回文子串长度
Jan 22 Python
Selenium控制浏览器常见操作示例
Aug 13 Python
Python wxpython模块响应鼠标拖动事件操作示例
Aug 23 Python
在python中计算ssim的方法(与Matlab结果一致)
Dec 19 Python
python基于三阶贝塞尔曲线的数据平滑算法
Dec 27 Python
python读取与处理netcdf数据方式
Feb 14 Python
Django实现whoosh搜索引擎使用jieba分词
Apr 08 Python
通过python 执行 nohup 不生效的解决
Apr 16 Python
Python reduce函数作用及实例解析
May 08 Python
分享unittest单元测试框架中几种常用的用例加载方法
Dec 02 Python
Python+AutoIt实现界面工具开发过程详解
Aug 07 #Python
Django中的用户身份验证示例详解
Aug 07 #Python
浅谈Python中(&,|)和(and,or)之间的区别
Aug 07 #Python
Python操作远程服务器 paramiko模块详细介绍
Aug 07 #Python
使用Python快乐学数学Github万星神器Manim简介
Aug 07 #Python
python中的&&及||的实现示例
Aug 07 #Python
程序员的七夕用30行代码让Python化身表白神器
Aug 07 #Python
You might like
特详细的PHPMYADMIN简明安装教程
2008/08/01 PHP
PHP树的深度编历生成迷宫及A*自动寻路算法实例分析
2015/03/10 PHP
Netbeans 8.2将支持PHP7 更精彩
2016/06/13 PHP
PHP小程序支付功能完整版【基于thinkPHP】
2019/03/26 PHP
CSS+JS构建的图片查看器
2006/07/22 Javascript
setTimeout内不支持jquery的选择器的解决方案
2015/04/28 Javascript
nodejs导出excel的方法
2015/06/30 NodeJs
AngularJs IE Compatibility 兼容老版本IE
2016/09/01 Javascript
详解vue-router 2.0 常用基础知识点之router-link
2017/05/10 Javascript
使用jQuery.Pin垂直滚动时固定导航
2017/05/24 jQuery
vue.js内部自定义指令与全局自定义指令的实现详解(利用directive)
2017/07/11 Javascript
JS调用安卓手机摄像头扫描二维码
2018/10/16 Javascript
微信小程序定义和调用全局变量globalData的实现
2019/11/01 Javascript
[17:45]DOTA2 HEROES教学视频教你分分钟做大人-军团指挥官
2014/06/11 DOTA
[35:43]2018DOTA2亚洲邀请赛 4.1 小组赛B组 paiN vs Effect
2018/04/03 DOTA
Python实现根据IP地址和子网掩码算出网段的方法
2015/07/30 Python
python嵌套函数使用外部函数变量的方法(Python2和Python3)
2016/01/31 Python
python发送邮件功能实现代码
2016/07/15 Python
利用Python为iOS10生成图标和截屏
2016/09/24 Python
Python中int()函数的用法浅析
2017/10/17 Python
Python内置模块hashlib、hmac与uuid用法分析
2018/02/12 Python
详解Ubuntu环境下部署Django+uwsgi+nginx总结
2020/04/02 Python
python统计mysql数据量变化并调用接口告警的示例代码
2020/09/21 Python
浅谈CSS3 动画卡顿解决方案
2019/01/02 HTML / CSS
CSS3实现div从下往上滑入滑出效果示例
2020/04/28 HTML / CSS
canvas实现手机的手势解锁的步骤详细
2020/03/16 HTML / CSS
Dr.Jart+美国官网:韩国药妆品牌
2019/01/18 全球购物
马德里竞技官方网上商店:Atletico Madrid Shop
2019/03/31 全球购物
买卖正宗运动鞋:GOAT
2019/12/06 全球购物
会计应届生的自荐信
2013/12/13 职场文书
幼儿园中班上学期评语
2014/04/18 职场文书
2014年安全生产工作总结
2014/11/13 职场文书
2015年第十五个全民国防教育日宣传活动方案
2015/05/06 职场文书
学校体育节班级口号
2015/12/25 职场文书
vue-cropper插件实现图片截取上传组件封装
2021/05/27 Vue.js
HTML怎么设置下划线?html文字加下划线方法
2021/12/06 HTML / CSS