JAVA 线程池(池化技术)的实现原理


Posted in Java/Android onApril 28, 2022

前言:

线程池是一个非常重要的知识点,也是池化技术的一个典型应用,相信很多人都有使用线程池的经历,但是对于线程池的实现原理大家都了解吗?本篇文章我们将深入线程池源码来一探究竟。

线程池的起源

背景: 随着计算机硬件的升级换代,使我们的软件具备多线程执行任务的能力。当我们在进行多线程编程时,就需要创建线程,如果说程序并发很高的话,我们会创建大量的线程,而每个线程执行一个时间很短的任务就结束了,这样频繁创建线程,会极大的降低系统性能,增加服务器开销,因为创建线程和销毁线程都需要额外的消耗。

这时我们就可以借助池化技术,来优化这一缺陷,线程池就诞生了。

池化技术的本质是在高并发场景下,为了实现资源复用,减少资源创建销毁等开销,如果并发数很小没有明显优势(资源一直占用系统内存,没有机会被使用)。

池化技术介绍: 什么时池化技术呢?池化技术是一种编程技巧,当程序出现高并发时,能够明显的优化程序,降低系统频繁创建销毁连接等额外开销。我们经常接触到的池化技术有数据库连接池、线程池、对象池等等。池化技术的特点是将一些高成本的资源维护在一个特定的池子(内存)中,规定其最小连接数、最大连接数、阻塞队列,溢出规则等配置,方便统一管理。一般情况下也会附带一些监控,强制回收等配套功能。

池化技术作为一种资源使用技术,典型的使用情形是:

  • 获取资源的成本较高的时候
  • 请求资源的频率很高且使用资源总数较低的时候
  • 面对性能问题,涉及到处理时间延迟的时候

池化技术资源分类:

  • 系统调用的系统资源,如线程、进程、内存分配等
  • 网络通信的远程资源, 如数据库连接、套接字连接等

线程池的定义和使用

线程池是我们为了规避创建线程,销毁线程额外开销而诞生的,所以说我们定义创建好线程池之后,就不需要自己来创建线程,而是使用线程池调用执行我们的任务。下面我们一起看一下如何定义并创建线程池。

方案一:Executors(仅做了解,推荐使用方案二)

创建线程池可以使用Executors,其中提供了一系列工厂方法用于创建线程池,返回的线程池都实现了ExecutorService接口。

ExecutorService 接口是Executor接口的子类接口,使用更为广泛,其提供了线程池生命周期管理的方法,返回 Future 对象

也就是说我们通过Executors创建线程池,得到ExecutorService,通过ExecutorService执行异步任务(实现Runnable接口)

Executors 可以创建一下几种类型的线程池:

  • newCachedThreadPool 创建一个可缓存线程池,如果线程池线程数量过剩,会在60秒后回收掉多余线程资源,当任务书增加,线程不够用,则会新建线程。
  • newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
  • newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。
  • newSingleThreadExecutor 创建一个单线程的线程池,只使用唯一的线程来执行任务,可以保证任务按照提交顺序来完成。

方案二:ThreadPoolExecutor

在阿里巴巴开发规范中,规定线程池不允许通过Executors创建,而是通过ThreadPoolExecutor创建。

好处:让写的同学可以更加明确线程池的运行规则,规避资源耗尽的风险。

ThreadPoolExecutor的七大参数:

(1)corePoolSize 核心线程数量,核心线程会一直保留,不会被销毁。

(2)maximumPoolSize 最大线程数,当核心线程不能满足任务需要时,系统就会创建新的线程来执行任务。

(3)keepAliveTime 存活时间,核心线程之外的线程空闲多长时间就会被销毁。

(4)timeUnit 代表线程存活的时间单位。

(5)BlockingQueue 阻塞队列

  • 如果正在执行的任务超过了最大线程数,可以存放在队列中,当线程池中有空闲资源就可以从队列中取出任务继续执行。
  • 队列类型有如下几种类型:LinkedBlockingQueue ArrayBlockingQueue SynchronousQueue TransferQueue。

(6)threadFactory 线程工厂,用来创建线程的,可以自定义线程,比如我们可以定义线程组名称,在jstack问题排查时,非常有帮助。

(7)rejectedExecutionHandler 拒绝策略,

当所有线程(最大线程数)都在忙,并且任务队列处于满任务的状态,则会执行拒绝策略。

JDK为我们提供了四种拒绝策略,我们必须都得熟悉

  • AbortPolicy: 丢弃任务,并抛出异常RejectedExecutionException。 默认
  • DiscardPolicy: 丢弃最新的任务,不抛异常。
  • DiscardOldestPolicy: 扔掉排队时间最久的任务,也就是最旧的任务。
  • CallerRuns: 由调用者(提交异步任务的线程)处理任务。

线程池的实现原理

想要实现一个线程池我们就需要关心ThreadPoolExecutor类,因为Executors创建线程池也是通过new ThreadPoolExecutor对象。

看一下ThreadPoolExecutor的类继承关系,可以看出为什么通过Executors创建的线程池返回结果是ExecutorService,因为ThreadPoolExecutor是ExecutorService接口的实现类,而Executors创建线程池本质也是创建的ThreadPoolExecutor 对象。

JAVA 线程池(池化技术)的实现原理

下面我们一起看一下ThreadPoolExecutor的源码,首先是ThreadPoolExecutor内定义的变量,常量:

// 复合类型变量 是一个原子整数  控制状态(运行状态|线程池活跃线程数量)
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); 
    private static final int COUNT_BITS = Integer.SIZE - 3; // 低29位 
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1; // 容量
    // 运行状态存储在高位3位
    private static final int RUNNING    = -1 << COUNT_BITS;  // 接受新任务,并处理队列任务
    private static final int SHUTDOWN   =  0 << COUNT_BITS;  // 不接受新任务,但会处理队列任务
    private static final int STOP       =  1 << COUNT_BITS;  // 不接受新任务,不会处理队列任务,中断正在处理的任务
    private static final int TIDYING    =  2 << COUNT_BITS;  // 所有的任务已结束,活跃线程为0,线程过渡到TIDYING状       态,将会执行terminated()钩子方法
    private static final int TERMINATED =  3 << COUNT_BITS;  // terminated()方法已经完成
    // 设置 ctl 参数方法
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }
    /**
     * 阻塞队列
     */
    private final BlockingQueue<Runnable> workQueue;
    /**
     * Lock 锁.
     */
    private final ReentrantLock mainLock = new ReentrantLock();
    /**
     * 工人们
     */
    private final HashSet<Worker> workers = new HashSet<Worker>();
    /**
     * 等待条件支持等待终止
     */
    private final Condition termination = mainLock.newCondition();
    /**
     * 最大的池大小.
     */
    private int largestPoolSize;
    /**
     * 完成任务数
     */
    private long completedTaskCount;
    /**
     * 线程工厂
     */
    private volatile ThreadFactory threadFactory;
    /**
     * 拒绝策略
     */
    private volatile RejectedExecutionHandler handler;
    /**
     * 存活时间
     */
    private volatile long keepAliveTime;
    /**
     * 允许核心线程数
     */
    private volatile boolean allowCoreThreadTimeOut;
    /**
     * 核心线程数
     */
    private volatile int corePoolSize;
    /**
     * 最大线程数
     */
    private volatile int maximumPoolSize;
    /**
     * 默认拒绝策略
     */
    private static final RejectedExecutionHandler defaultHandler =
        new AbortPolicy();
    /**
     * shutdown and shutdownNow权限
     */
    private static final RuntimePermission shutdownPerm =
        new RuntimePermission("modifyThread");

构造器,,支持最少五种参数,最大七中参数的四种构造器:

   public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             threadFactory, defaultHandler);
    }
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              RejectedExecutionHandler handler) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), handler);
    }
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

工人,线程池中执行任务的,线程池就是通过这些工人进行工作的,有核心员工(核心线程)和临时工(人手不够的时候,临时创建的,如果空闲时间厂,就会被裁员),

   private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        private static final long serialVersionUID = 6138294804551838833L;
        // 工人的本质就是个线程
        final Thread thread;
        // 第一件工作任务
        Runnable firstTask;
      volatile long completedTasks;
        /**
         * 构造器
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }
        /** 工作  */
        public void run() {
            runWorker(this);
        }
        protected boolean isHeldExclusively() {
            return getState() != 0;
        }
        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }
        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }
        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }
        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }

核心方法,通过线程池执行任务(这也是线程池的运行原理):

  • 检验任务
  • 获取当前线程池状态
  • 判断上班工人数量是否小于核心员工数
  • 如果小于则招人,安排工作
  • 不小于则判断等候区任务是否排满
  • 如果没有排满则任务排入等候区
  • 如果排满,看是否允许招人,允许招人则招临时工
  • 如果都不行,该线程池无法接收新任务,开始按老板约定的拒绝策略,执行拒绝策略
   public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

submit()方法是其抽象父类定义的,这里我们就可以明显看到submit与execute的区别,通过submit调用,我们会创建RunnableFuture,并且会返回Future,这里我们可以将返回值类型,告知submit方法,它就会通过泛型约束返回值。

public abstract class AbstractExecutorService implements ExecutorService {
    public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        execute(ftask);
        return ftask;
    }
    public <T> Future<T> submit(Runnable task, T result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task, result);
        execute(ftask);
        return ftask;
    }
    public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }
    ...
}      

addWorker()是招人的一个方法:

   private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);
            // 判断状态,及任务列表
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;
            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }
        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    int rs = runStateOf(ctl.get());
                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

获取任务的方法:

   private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);
            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }
            int wc = workerCountOf(c);
            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }
            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

让员工干活的方法,分配任务,运行任务:

  final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

到此这篇关于从java源码分析线程池(池化技术)的实现原理的文章就介绍到这了!


Tags in this post...

Java/Android 相关文章推荐
死磕 java同步系列之synchronized解析
Jun 28 Java/Android
Spring实现内置监听器
Jul 09 Java/Android
OpenCV实现普通阈值
Nov 17 Java/Android
Java中Quartz高可用定时任务快速入门
Apr 03 Java/Android
Android Flutter实现3D动画效果示例详解
Apr 07 Java/Android
Java GUI编程菜单组件实例详解
Apr 07 Java/Android
详细介绍Java中的CyclicBarrier
Apr 13 Java/Android
Android开发之底部导航栏的快速实现
Apr 28 Java/Android
向Spring IOC 容器动态注册bean实现方式
Jul 15 Java/Android
java实现web实时消息推送的七种方案
Jul 23 Java/Android
IDEA中sout快捷键无效问题的解决方法
Jul 23 Java/Android
Java实现贪吃蛇游戏的示例代码
Sep 23 Java/Android
Spring Data JPA框架自定义Repository接口
Apr 28 #Java/Android
Spring Data JPA框架持久化存储数据到数据库
Spring Data JPA框架的核心概念和Repository接口
Java 多态分析
Java由浅入深通关抽象类与接口(下篇)
Java由浅入深通关抽象类与接口(上篇)
Mybatis-Plus 使用 @TableField 自动填充日期
Apr 26 #Java/Android
You might like
用PHP中的 == 运算符进行字符串比较
2006/11/26 PHP
jQuery中的RadioButton,input,CheckBox取值赋值实现代码
2014/02/18 PHP
php+MySQL判断update语句是否执行成功的方法
2014/08/28 PHP
php基于mcrypt的加密解密实例
2014/10/27 PHP
PHP实现服务器状态监控的方法
2014/12/09 PHP
thinkphp autoload 命名空间自定义 namespace
2015/07/17 PHP
深入理解PHP 数组之count 函数
2016/06/13 PHP
PHP实现双链表删除与插入节点的方法示例
2017/11/11 PHP
Javascript中的delete操作符详细介绍
2014/06/06 Javascript
使用jQuery的toggle()方法对HTML标签进行显示、隐藏的方法(示例)
2016/09/01 Javascript
jQuery实现倒计时重新发送短信验证码功能示例
2017/01/12 Javascript
Angularjs的键盘事件的绑定
2017/07/27 Javascript
浅析node Async异步处理模块用例分析及常用方法介绍
2017/11/17 Javascript
浅谈Node 调试工具入门教程
2018/03/20 Javascript
Vue点击切换颜色的方法
2018/09/13 Javascript
vue多次循环操作示例
2019/02/08 Javascript
vue的keep-alive中使用EventBus的方法
2019/04/23 Javascript
微信小程序中如何使用flyio封装网络请求
2019/07/03 Javascript
python pygame实现五子棋小游戏
2020/10/26 Python
基于sklearn实现Bagging算法(python)
2019/07/11 Python
python使用pandas处理excel文件转为csv文件的方法示例
2019/07/18 Python
Python+Redis实现布隆过滤器
2019/12/08 Python
详解Python实现进度条的4种方式
2020/01/15 Python
TensorFLow 数学运算的示例代码
2020/04/21 Python
css3动画 小球滚动 js控制动画暂停
2019/11/29 HTML / CSS
html5实现微信打飞机游戏
2014/03/27 HTML / CSS
John Varvatos官方网站:设计师男士时装
2017/02/08 全球购物
技术副厂长岗位职责
2013/12/26 职场文书
大学生在校学习的自我评价
2014/02/18 职场文书
2014年小学生迎国庆65周年演讲稿
2014/09/27 职场文书
在教室放鞭炮的检讨书
2014/09/28 职场文书
债务纠纷委托书范本
2014/10/14 职场文书
学校世界艾滋病日宣传活动总结
2015/05/05 职场文书
现实表现证明材料
2015/06/19 职场文书
解决Pytorch半精度浮点型网络训练的问题
2021/05/24 Python
OpenCV-Python实现人脸磨皮算法
2021/06/07 Python