Python实现机器学习算法的分类


Posted in Python onJune 03, 2021

Python算法的分类

对葡萄酒数据集进行测试,由于数据集是多分类且数据的样本分布不平衡,所以直接对数据测试,效果不理想。所以使用SMOTE过采样对数据进行处理,对数据去重,去空,处理后数据达到均衡,然后进行测试,与之前测试相比,准确率提升较高。

Python实现机器学习算法的分类

例如:决策树:

Smote处理前:

Python实现机器学习算法的分类

Smote处理后:

Python实现机器学习算法的分类

from typing import Counter
from matplotlib import colors, markers
import numpy as np
import pandas as pd
import operator
import matplotlib.pyplot as plt
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
# 判断模型预测准确率的模型
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import f1_score
from sklearn.metrics import classification_report

#设置绘图内的文字
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']


path ="C:\\Users\\zt\\Desktop\\winequality\\myexcel.xls"
# path=r"C:\\Users\\zt\\Desktop\\winequality\\winequality-red.csv"#您要读取的文件路径
# exceldata = np.loadtxt(
#     path,
#     dtype=str,
#     delimiter=";",#每列数据的隔开标志
#     skiprows=1
# )

# print(Counter(exceldata[:,-1]))

exceldata = pd.read_excel(path)
print(exceldata)

print(exceldata[exceldata.duplicated()])
print(exceldata.duplicated().sum())

#去重
exceldata = exceldata.drop_duplicates()


#判空去空
print(exceldata.isnull())
print(exceldata.isnull().sum)
print(exceldata[~exceldata.isnull()])
exceldata = exceldata[~exceldata.isnull()]

print(Counter(exceldata["quality"]))

#smote

#使用imlbearn库中上采样方法中的SMOTE接口
from imblearn.over_sampling import SMOTE
#定义SMOTE模型,random_state相当于随机数种子的作用


X,y = np.split(exceldata,(11,),axis=1)
smo = SMOTE(random_state=10) 

x_smo,y_smo = SMOTE().fit_resample(X.values,y.values)




print(Counter(y_smo))



x_smo = pd.DataFrame({"fixed acidity":x_smo[:,0], "volatile acidity":x_smo[:,1],"citric acid":x_smo[:,2] ,"residual sugar":x_smo[:,3] ,"chlorides":x_smo[:,4],"free sulfur dioxide":x_smo[:,5] ,"total sulfur dioxide":x_smo[:,6] ,"density":x_smo[:,7],"pH":x_smo[:,8] ,"sulphates":x_smo[:,9] ," alcohol":x_smo[:,10]})
y_smo = pd.DataFrame({"quality":y_smo})
print(x_smo.shape)
print(y_smo.shape)
#合并
exceldata = pd.concat([x_smo,y_smo],axis=1)
print(exceldata)

#分割X,y
X,y = np.split(exceldata,(11,),axis=1)
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=10,train_size=0.7)
print("训练集大小:%d"%(X_train.shape[0]))
print("测试集大小:%d"%(X_test.shape[0]))



def func_mlp(X_train,X_test,y_train,y_test):
    print("神经网络MLP:")
    kk = [i for i in range(200,500,50) ] #迭代次数
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in kk:
        method = MLPClassifier(activation="tanh",solver='lbfgs', alpha=1e-5,
                    hidden_layer_sizes=(5, 2), random_state=1,max_iter=n)
        method.fit(X_train,y_train)
        MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9,
                        beta_2=0.999, early_stopping=False, epsilon=1e-08,
                        hidden_layer_sizes=(5, 2), learning_rate='constant',
                        learning_rate_init=0.001, max_iter=n, momentum=0.9,
                        nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
                        solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
                        warm_start=False)
        y_predict = method.predict(X_test)
        t =classification_report(y_test, y_predict, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理MLP")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('迭代次数')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同迭代次数下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('迭代次数')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同迭代次数下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('迭代次数')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同迭代次数下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('迭代次数')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同迭代次数下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()


def func_svc(X_train,X_test,y_train,y_test):
    print("向量机:")
    kk = ["linear","poly","rbf"] #核函数类型
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in kk:
        method = SVC(kernel=n, random_state=0)
        method = method.fit(X_train, y_train)
        y_predic = method.predict(X_test)
        t =classification_report(y_test, y_predic, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理向量机")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('核函数类型')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同核函数类型下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('核函数类型')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同核函数类型下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('核函数类型')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同核函数类型下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('核函数类型')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同核函数类型下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()

def func_classtree(X_train,X_test,y_train,y_test):
    print("决策树:")
    kk = [10,20,30,40,50,60,70,80,90,100] #决策树最大深度
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in kk:
        method = tree.DecisionTreeClassifier(criterion="gini",max_depth=n)
        method.fit(X_train,y_train)
        predic = method.predict(X_test)
        print("method.predict:%f"%method.score(X_test,y_test))

        
        t =classification_report(y_test, predic, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理决策树")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('决策树最大深度')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同决策树最大深度下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('决策树最大深度')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同决策树最大深度下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('决策树最大深度')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同决策树最大深度下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('决策树最大深度')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同决策树最大深度下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()

def func_adaboost(X_train,X_test,y_train,y_test):
    print("提升树:")
    kk = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8]
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in range(100,200,200):
        for k in kk:
            print("迭代次数为:%d\n学习率:%.2f"%(n,k))
            bdt = AdaBoostClassifier(tree.DecisionTreeClassifier(max_depth=2, min_samples_split=20),
                                    algorithm="SAMME",
                                    n_estimators=n, learning_rate=k)
            bdt.fit(X_train, y_train)
            #迭代100次 ,学习率为0.1
            y_pred = bdt.predict(X_test)
            print("训练集score:%lf"%(bdt.score(X_train,y_train)))
            print("测试集score:%lf"%(bdt.score(X_test,y_test)))
            print(bdt.feature_importances_)

            t =classification_report(y_test, y_pred, target_names=['3','4','5','6','7','8'],output_dict=True)
            print(t)
            t_accuracy.append(t["accuracy"])
            t_precision.append(t["weighted avg"]["precision"])
            t_recall.append(t["weighted avg"]["recall"])
            t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理迭代100次(adaboost)")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('学习率')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同学习率下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('学习率')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同学习率下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('学习率')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同学习率下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('学习率')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同学习率下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()


# inX 用于分类的输入向量
# dataSet表示训练样本集
# 标签向量为labels,标签向量的元素数目和矩阵dataSet的行数相同
# 参数k表示选择最近邻居的数目
def classify0(inx, data_set, labels, k):
    """实现k近邻"""
    data_set_size = data_set.shape[0]   # 数据集个数,即行数
    diff_mat = np.tile(inx, (data_set_size, 1)) - data_set   # 各个属性特征做差
    sq_diff_mat = diff_mat**2  # 各个差值求平方
    sq_distances = sq_diff_mat.sum(axis=1)  # 按行求和
    distances = sq_distances**0.5   # 开方
    sorted_dist_indicies = distances.argsort()  # 按照从小到大排序,并输出相应的索引值
    class_count = {}  # 创建一个字典,存储k个距离中的不同标签的数量

    for i in range(k):
        vote_label = labels[sorted_dist_indicies[i]]  # 求出第i个标签

        # 访问字典中值为vote_label标签的数值再加1,
        #class_count.get(vote_label, 0)中的0表示当为查询到vote_label时的默认值
        class_count[vote_label[0]] = class_count.get(vote_label[0], 0) + 1
    # 将获取的k个近邻的标签类进行排序
    sorted_class_count = sorted(class_count.items(), 
    key=operator.itemgetter(1), reverse=True)
    # 标签类最多的就是未知数据的类
    return sorted_class_count[0][0]

def func_knn(X_train,X_test,y_train,y_test):
    print("k近邻:")
    kk = [i for i in range(3,30,5)] #k的取值
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    for n in kk:
        y_predict = []
        for x in X_test.values:
            a = classify0(x, X_train.values, y_train.values, n)  # 调用k近邻分类
            y_predict.append(a)

        t =classification_report(y_test, y_predict, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理k近邻")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('k值')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同k值下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))
    
    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('k值')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同k值下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('k值')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同k值下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('k值')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同k值下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()

def func_randomforest(X_train,X_test,y_train,y_test):
    print("随机森林:")
    t_precision = []
    t_recall = []
    t_accuracy = []
    t_f1_score = []
    kk = [10,20,30,40,50,60,70,80] #默认树的数量
    for n in kk:
        clf = RandomForestClassifier(n_estimators=n, max_depth=100,min_samples_split=2, random_state=10,verbose=True)
        clf.fit(X_train,y_train)
        predic = clf.predict(X_test)

        print("特征重要性:",clf.feature_importances_)
        print("acc:",clf.score(X_test,y_test))

        t =classification_report(y_test, predic, target_names=['3','4','5','6','7','8'],output_dict=True)
        print(t)
        t_accuracy.append(t["accuracy"])
        t_precision.append(t["weighted avg"]["precision"])
        t_recall.append(t["weighted avg"]["recall"])
        t_f1_score.append(t["weighted avg"]["f1-score"])
    plt.figure("数据未处理深度100(随机森林)")
    plt.subplot(2,2,1)
    #添加文本 #x轴文本
    plt.xlabel('树的数量')
    #y轴文本
    plt.ylabel('accuracy')
    #标题
    plt.title('不同树的数量下的accuracy')
    plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))
    
    plt.subplot(2,2,2)
    #添加文本 #x轴文本
    plt.xlabel('树的数量')
    #y轴文本
    plt.ylabel('precision')
    #标题
    plt.title('不同树的数量下的precision')
    plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,3)
    #添加文本 #x轴文本
    plt.xlabel('树的数量')
    #y轴文本
    plt.ylabel('recall')
    #标题
    plt.title('不同树的数量下的recall')
    plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.subplot(2,2,4)
    #添加文本 #x轴文本
    plt.xlabel('树的数量')
    #y轴文本
    plt.ylabel('f1_score')
    #标题
    plt.title('不同树的数量下的f1_score')
    plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
    plt.yticks(np.arange(0,1,0.1))

    plt.show()






if __name__ == '__main__':
    #神经网络
    print(func_mlp(X_train,X_test,y_train,y_test))
    #向量机
    print(func_svc(X_train,X_test,y_train,y_test))
    #决策树
    print(func_classtree(X_train,X_test,y_train,y_test))
    #提升树
    print(func_adaboost(X_train,X_test,y_train,y_test))
    #knn
    print(func_knn(X_train,X_test,y_train,y_test))
    #randomforest
    print(func_randomforest(X_train,X_test,y_train,y_test))

 

到此这篇关于Python实现机器学习算法的分类的文章就介绍到这了,更多相关Python算法分类内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
pygame学习笔记(3):运动速率、时间、事件、文字
Apr 15 Python
python使用分治法实现求解最大值的方法
May 12 Python
python查找指定具有相同内容文件的方法
Jun 28 Python
Python设计模式之观察者模式简单示例
Jan 10 Python
python版微信跳一跳游戏辅助
Jan 11 Python
用python处理图片之打开\显示\保存图像的方法
May 04 Python
python多继承(钻石继承)问题和解决方法简单示例
Oct 21 Python
Pandas 缺失数据处理的实现
Nov 04 Python
python元组的概念知识点
Nov 19 Python
python实现宿舍管理系统
Nov 22 Python
Django全局启用登陆验证login_required的方法
Jun 02 Python
python爬虫使用scrapy注意事项
Nov 23 Python
Jupyter Notebook 如何修改字体和大小以及更改字体样式
Python数据可视化之用Matplotlib绘制常用图形
使用numpy实现矩阵的翻转(flip)与旋转
Jun 03 #Python
详解Python生成器和基于生成器的协程
实例讲解Python中sys.argv[]的用法
Jun 03 #Python
Django与数据库交互的实现
Jun 03 #Python
Python代码风格与编程习惯重要吗?
Jun 03 #Python
You might like
php数组函数序列之array_unshift() 在数组开头插入一个或多个元素
2011/11/07 PHP
PHP基于简单递归函数求一个数阶乘的方法示例
2017/04/26 PHP
使用Git实现Laravel项目的自动化部署
2019/11/24 PHP
JS 学习笔记 防止发生命名冲突
2009/07/30 Javascript
JS辨别访问浏览器判断是android还是ios系统
2014/08/19 Javascript
jQuery设置和移除文本框默认值的方法
2015/03/09 Javascript
JQuery解析XML数据的几个简单实例
2016/05/18 Javascript
jQuery的ajax下载blob文件
2016/07/21 Javascript
gulp-uglify 与gulp.watch()配合使用时报错(重复压缩问题)
2016/08/24 Javascript
每个程序员都需要学习 JavaScript 的7个理由小结
2016/09/03 Javascript
javascript实现简易计算器
2017/02/01 Javascript
微信小程序“摇一摇”的实例代码
2017/07/20 Javascript
JavaScript设计模式之观察者模式(发布订阅模式)原理与实现方法示例
2018/07/27 Javascript
angular2组件中定时刷新并清除定时器的实例讲解
2018/08/31 Javascript
Vue刷新修改页面中数据的方法
2018/09/16 Javascript
微信小程序利用swiper+css实现购物车商品删除功能
2019/03/06 Javascript
HTML+JS实现“代码雨”效果源码(黑客帝国文字下落效果)
2020/03/17 Javascript
微信小程序使用GoEasy实现websocket实时通讯
2020/05/19 Javascript
vue+AI智能机器人回复功能实现
2020/07/16 Javascript
[10:42]Team Liquid Vs Newbee
2018/06/07 DOTA
PyTorch搭建一维线性回归模型(二)
2019/05/22 Python
pandas DataFrame索引行列的实现
2019/06/04 Python
利用Python复制文件的9种方法总结
2019/09/02 Python
Python树莓派学习笔记之UDP传输视频帧操作详解
2019/11/15 Python
Python  word实现读取及导出代码解析
2020/07/09 Python
Python3 用什么IDE开发工具比较好
2020/11/28 Python
Tenstickers法国:墙贴和装饰贴纸
2019/08/26 全球购物
Wallis官网:英国女装零售商
2020/01/21 全球购物
我的applet原先好好的, 一放到web server就会有问题,为什么?
2016/05/10 面试题
static函数与普通函数有什么区别
2015/12/25 面试题
教师实习自我鉴定
2013/12/14 职场文书
师德师风演讲稿
2014/05/05 职场文书
欢迎领导标语
2014/06/27 职场文书
2014法院四风问题对照检查材料思想汇报
2014/10/04 职场文书
2015年安全月活动总结
2015/03/26 职场文书
go goth封装第三方认证库示例详解
2022/08/14 Golang