OpenCV 表盘指针自动读数的示例代码


Posted in Python onApril 10, 2020

前段时间参加了一个表盘指针读数的比赛,今天来总结一下

数据集一共有一千张图片:

OpenCV 表盘指针自动读数的示例代码

方法一:径向灰度求和

基本原理:

将图像以表盘圆心转换成极坐标,然后通过矩阵按行求和找到二值图最大值即为指针尖端

导入需要用到的包

import cv2 as cv
import numpy as np
import math
from matplotlib import pyplot as plt
import os

图像预处理

去除背景:利用提取红色实现

def extract_red(image):
  """
  通过红色过滤提取出指针
  """
  red_lower1 = np.array([0, 43, 46])
  red_upper1 = np.array([10, 255, 255])
  red_lower2 = np.array([156, 43, 46])
  red_upper2 = np.array([180, 255, 255])
  dst = cv.cvtColor(image, cv.COLOR_BGR2HSV)
  mask1 = cv.inRange(dst, lowerb=red_lower1, upperb=red_upper1)
  mask2 = cv.inRange(dst, lowerb=red_lower2, upperb=red_upper2)
  mask = cv.add(mask1, mask2)
  return mask

OpenCV 表盘指针自动读数的示例代码

获得钟表中心:轮廓查找,取出轮廓的外接矩形,根据矩形面积找出圆心

def get_center(image):
  """
  获取钟表中心
  """ 
  edg_output = cv.Canny(image, 100, 150, 2) # canny算子提取边缘
  cv.imshow('dsd', edg_output)
  # 获取图片轮廓
  contours, hireachy = cv.findContours(edg_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
  center = []
  cut=[0, 0]
  for i, contour in enumerate(contours):
    x, y, w, h = cv.boundingRect(contour) # 外接矩形
    area = w * h # 面积
    if area < 100 or area > 4000:
      continue
    cv.rectangle(image, (x, y), (x + w, y + h), (255, 0, 0), 1)
    cx = w / 2
    cy = h / 2
    cv.circle(image, (np.int(x + cx), np.int(y + cy)), 1, (255, 0, 0)) ## 在图上标出圆心
    center = [np.int(x + cx), np.int(y + cy)]
    break
  return center[::-1]

OpenCV 表盘指针自动读数的示例代码

由上面的图像可以看出,圆心定位还是非常准确的

图片裁剪

def ChangeImage(image):
  """
  图像裁剪
  """
  # 指针提取
  mask = extract_red(image)
  mask = cv.medianBlur(mask,ksize=5)#去噪
  # 获取中心
  center = get_center(mask)
  # 去除多余黑色边框
  [y, x] = center
  cut = mask[y-300:y+300, x-300:x+300]
  # 因为mask处理后已经是二值图像,故不用转化为灰度图像
  return cut

剪裁后的图像如下图所示:

OpenCV 表盘指针自动读数的示例代码

极坐标转换

注意:需要将图片裁剪成正方形

def polar(image):
  """
  转换成极坐标
  """
  x, y = 300, 300
  maxRadius = 300*math.sqrt(2)
  linear_polar = cv.linearPolar(image, (y, x), maxRadius, cv.WARP_FILL_OUTLIERS + cv.INTER_LINEAR)
  mypolar = linear_polar.copy()
  #将图片调整为从0度开始
  mypolar[:150, :] = linear_polar[450:, :]
  mypolar[150:, :] = linear_polar[:450, :]
  cv.imshow("linear_polar", linear_polar)
  cv.imshow("mypolar", mypolar)
  return mypolar

OpenCV 表盘指针自动读数的示例代码

由图像就可以很容易发现指针的顶点

计算角度

def Get_Reading(sumdata):
  """
  读数并输出
  """
  peak = []
  # s记录遍历时波是否在上升
  s = sumdata[0] < sumdata[1]
  for i in range(599):
    # 上升阶段
    if s==True and sumdata[i] > sumdata[i+1] and sumdata[i] > 70000:
      peak.append(sumdata[i])
      s=False
    # 下降阶段
    if s==False and sumdata[i] < sumdata[i+1]:
      s=True
  peak.sort()
  a = sumdata[0]
  b = sumdata[-1]
  if not peak or max(a,b) > peak[-1]:
    peak.append(max(a,b))
  longindex = (sumdata.index(peak[-1]))%599
  longnum = (longindex + 1)//25*50
  # 先初始化和长的同一刻度
  #shortindex = longindex
  shortnum = round(longindex / 6)
  try:
    shortindex = sumdata.index(peak[-2])
    shortnum = round(shortindex / 6)
  except IndexError:
    i=0
    while i<300:
      i += 1
      l = sumdata[(longindex-i)%600]
      r = sumdata[(longindex+i)%600]
      possibleshort = max(l,r)
      # 在短指针可能范围内寻找插值符合条件的值
      if possibleshort > 80000:
        continue
      elif possibleshort < 60000:
        break
      else:
        if abs(l-r) > 17800:
          shortindex = sumdata.index(possibleshort) - 1
          shortnum = round(shortindex / 6)
          break
  return [longnum,shortnum%100]
def test():
  """
  RGS法测试
  """
  image = cv.imread("./BONC/1_{0:0>4d}".format(400) + ".jpg")
  newimg = ChangeImage(image)
  polarimg = polar(newimg)
  psum = polarimg.sum(axis=1, dtype = 'int32')
  result = Get_Reading(list(psum))
  print(result)
if __name__ == "__main__":
  test()
  k = cv.waitKey(0)
  if k == 27:
    cv.destroyAllWindows()
  elif k == ord('s'):
    cv.imwrite('new.jpg', src)
    cv.destroyAllWindows()

[1050, 44]

方法二:Hough直线检测

原理:利用Hough变换检测出指针的两条边,从而两条边的中线角度即为指针刻度

数据预处理与上面的方法类似

OpenCV 表盘指针自动读数的示例代码

可以看到分别检测出了两个指针的左右两条边,然后可以由这四个角度算出两个指针中线的角度,具体计算过程写的有点复杂

class Apparatus:
  def __init__(self, name):
    self.name = name
    self.angle = []
    self.src = cv.imread(name)


  def line_detect_possible_demo(self, image, center, tg):
    '''
    :param image: 二值图
    :param center: 圆心
    :param tg: 直线检测maxLineGap
    '''
    res = {} # 存放线段的斜率和信息
    edges = cv.Canny(image, 50, 150, apertureSize=7)
    cv.imshow("abcdefg", edges)
    lines = cv.HoughLinesP(edges, 1, np.pi/360, 13, minLineLength=20, maxLineGap=tg)
    for line in lines:
      x_1, y_1, x_2, y_2 = line[0]
      # 将坐标原点移动到圆心
      x1 = x_1 - center[0]
      y1 = center[1] - y_1
      x2 = x_2 - center[0]
      y2 = center[1] - y_2

      # 计算斜率
      if x2 - x1 == 0:
        k = float('inf')
      else:
        k = (y2-y1)/(x2-x1)
      d1 = np.sqrt(max(abs(x2), abs(x1)) ** 2 + (max(abs(y2), abs(y1))) ** 2) # 线段长度
      d2 = np.sqrt(min(abs(x2), abs(x1)) ** 2 + (min(abs(y2), abs(y1))) ** 2)
      # 将长指针与短指针做标记
      if d1 < 155 and d1 > 148 and d2 > 115:
        res[k] = [1]
      elif d1 < 110 and d1 > 100 and d2 > 75:
        res[k] = [2]
      else:
        continue
      res[k].append(1) if (x2 + x1) /2 > 0 else res[k].append(0) # 将14象限与23象限分离
      cv.line(self.src, (x1 + center[0], center[1] - y1), (x2 + center[0], center[1] - y2), (255, 0, 0), 1)
      cv.imshow("line_detect-posssible_demo", self.src)


      # 计算线段中点的梯度来判断是指针的左侧线段还是右侧线段
      middle_x = int((x_1 + x_2) / 2)
      middle_y = int((y_1 + y_2) / 2)
      grad_mat = image[middle_y-5:middle_y+6, middle_x-5:middle_x+6]
      cv.imshow("grad_mat", grad_mat)
      grad_x = cv.Sobel(grad_mat, cv.CV_32F, 1, 0)
      grad_y = cv.Sobel(grad_mat, cv.CV_32F, 0, 1)
      gradx = np.max(grad_x) if np.max(grad_x) != 0 else np.min(grad_x)
      grady = np.max(grad_y) if np.max(grad_y) != 0 else np.min(grad_y)
      if ((gradx >=0 and grady >= 0) or (gradx <= 0 and grady >= 0)) and res[k][1] == 1:
        res[k].append(1) # 右测
      elif ((gradx <= 0 and grady <= 0) or (gradx >= 0 and grady <= 0)) and res[k][1] == 0:
        res[k].append(1)
      else:
        res[k].append(0) # 左侧
    # 计算角度
    angle1 = [i for i in res if res[i][0] == 1]
    angle2 = [i for i in res if res[i][0] == 2]
    # 长指针
    a = np.arctan(angle1[0])
    b = np.arctan(angle1[1])
    if a * b < 0 and max(abs(a), abs(b)) > np.pi / 4:
      if a + b < 0:
        self.angle.append(math.degrees(-(a + b) / 2)) if res[angle1[1]][1] == 1 else self.angle.append(
          math.degrees(-(a + b) / 2) + 180)
      else:
        self.angle.append(math.degrees(np.pi - (a + b) / 2)) if res[angle1[1]][1] == 1 else self.angle.append(
          math.degrees(np.pi - (a + b) / 2) + 180)
    else:
      self.angle.append(math.degrees(np.pi / 2 - (a + b) / 2)) if res[angle1[1]][1] == 1 else self.angle.append(math.degrees(np.pi / 2 - (a + b) / 2) + 180)
    print('长指针读数:%f' % self.angle[0])


    # 短指针
    a = np.arctan(angle2[0])
    b = np.arctan(angle2[1])
    if a * b < 0 and max(abs(a), abs(b)) > np.pi / 4:
      if a + b < 0:
        self.angle.append(math.degrees(-(a + b) / 2)) if res[angle2[1]][1] == 1 else self.angle.append(
          math.degrees(-(a + b) / 2) + 180)
      else:
        self.angle.append(math.degrees(np.pi - (a + b) / 2)) if res[angle2[1]][1] == 1 else self.angle.append(
          math.degrees(np.pi - (a + b) / 2) + 180)
    else:
      self.angle.append(math.degrees(np.pi / 2 - (a + b) / 2)) if res[angle2[1]][1] == 1 else self.angle.append(math.degrees(np.pi / 2 - (a + b) / 2) + 180)
    print('短指针读数:%f' % self.angle[1])



  def get_center(self, mask):
    edg_output = cv.Canny(mask, 66, 150, 2)
    cv.imshow('edg', edg_output)
    # 外接矩形
    contours, hireachy = cv.findContours(edg_output, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
    center = []
    for i, contour in enumerate(contours):
      x, y, w, h = cv.boundingRect(contour) # 外接矩形
      area = w * h # 面积
      if area > 1000 or area < 40:
        continue
      #print(area)
      # cv.circle(src, (np.int(cx), np.int(cy)), 3, (255), -1)
      cv.rectangle(self.src, (x, y), (x + w, y + h), (255, 0, 0), 1)
      cx = w / 2
      cy = h / 2
      cv.circle(self.src, (np.int(x + cx), np.int(y + cy)), 1, (255, 0, 0))
      center.extend([np.int(x + cx), np.int(y + cy)])
      break

    cv.imshow('center', self.src)
    return center


  def extract(self, image):
    red_lower1 = np.array([0, 43, 46])
    red_lower2 = np.array([156, 43, 46])
    red_upper1 = np.array([10, 255, 255])
    red_upper2 = np.array([180, 255, 255])
    frame = cv.cvtColor(image, cv.COLOR_BGR2HSV)
    mask1 = cv.inRange(frame, lowerb=red_lower1, upperb=red_upper1)
    mask2 = cv.inRange(frame, lowerb=red_lower2, upperb=red_upper2)
    mask = cv.add(mask1, mask2)
    mask = cv.bitwise_not(mask)
    cv.imshow('mask', mask)
    return mask


  def test(self):
    self.src = cv.resize(self.src, dsize=None, fx=0.5, fy=0.5) # 此处可以修改插值方式interpolation
    mask = self.extract(self.src)
    mask = cv.medianBlur(mask, ksize=5) # 去噪
    # 获取中心
    center = self.get_center(mask)
    # 去除多余黑色边框
    [y, x] = center
    mask = mask[x - 155:x + 155, y - 155:y + 155]
    cv.imshow('mask', mask)
    #self.find_short(center, mask)
    try:
      self.line_detect_possible_demo(mask, center, 20)
    except IndexError:
      try:
        self.src = cv.imread(self.name)
        self.src = cv.resize(self.src, dsize=None, fx=0.5, fy=0.5) # 此处可以修改插值方式interpolation
        self.src = cv.convertScaleAbs(self.src, alpha=1.4, beta=0)
        blur = cv.pyrMeanShiftFiltering(self.src, 10, 17)
        mask = self.extract(blur)
        self.line_detect_possible_demo(mask, center, 20)
      except IndexError:
        self.src = cv.imread(self.name)
        self.src = cv.resize(self.src, dsize=None, fx=0.5, fy=0.5) # 此处可以修改插值方式interpolation
        self.src = cv.normalize(self.src, dst=None, alpha=200, beta=10, norm_type=cv.NORM_MINMAX)
    
        blur = cv.pyrMeanShiftFiltering(self.src, 10, 17)
        mask = self.extract(blur)
        self.line_detect_possible_demo(mask, center, 20)


if __name__ == '__main__':
  apparatus = Apparatus('./BONC/1_0555.jpg')
  # 读取图片
  apparatus.test()
  k = cv.waitKey(0)
  if k == 27:
    cv.destroyAllWindows()
  elif k == ord('s'):
    cv.imwrite('new.jpg', apparatus.src)
    cv.destroyAllWindows()

长指针读数:77.070291
短指针读数:218.896747

由结果可以看出精确度还是挺高的,但是这种方法有三个缺点:

  • 当两个指针重合时候不太好处理
  • 有时候hough直线检测只能检测出箭头的一条边,这时候就会报错,可以利用图像增强、角点检测和图像梯度来辅助解决,但是效果都不太好
  • 计算角度很复杂!!(也可能是我想复杂了,不过这段代码确实花了大量时间)

代码里可能还有很多问题,希望大家多多指出

到此这篇关于OpenCV 表盘指针自动读数的示例代码的文章就介绍到这了,更多相关OpenCV 表盘自动读数内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
在Python的Django框架中编写编译函数
Jul 20 Python
Python 内置函数memoryview(obj)的具体用法
Nov 23 Python
Django数据库表反向生成实例解析
Feb 06 Python
python opencv实现旋转矩形框裁减功能
Jul 25 Python
Python PO设计模式的具体使用
Aug 16 Python
python输出带颜色字体实例方法
Sep 01 Python
Python 剪绳子的多种思路实现(动态规划和贪心)
Feb 24 Python
pandas分批读取大数据集教程
Jun 06 Python
Python爬虫之Selenium实现窗口截图
Dec 04 Python
Python 打印自己设计的字体的实例讲解
Jan 04 Python
scrapy实践之翻页爬取的实现
Jan 05 Python
Python pyecharts绘制条形图详解
Apr 02 Python
Python装饰器的应用场景代码总结
Apr 10 #Python
在Python中使用K-Means聚类和PCA主成分分析进行图像压缩
Apr 10 #Python
jupyter notebook 增加kernel教程
Apr 10 #Python
Python3操作YAML文件格式方法解析
Apr 10 #Python
Jupyter Notebook远程登录及密码设置操作
Apr 10 #Python
Python 炫技操作之合并字典的七种方法
Apr 10 #Python
python+selenium+chromedriver实现爬虫示例代码
Apr 10 #Python
You might like
php 更新数据库中断的解决方法
2009/06/05 PHP
mcrypt启用 加密以及解密过程详细解析
2013/08/07 PHP
php递归获取目录内文件(包含子目录)封装类分享
2013/12/25 PHP
ThinkPHP5&amp;5.1框架关联模型分页操作示例
2019/08/03 PHP
PHP正则表达式函数preg_replace用法实例分析
2020/06/04 PHP
JQuery入门—JQuery程序的代码风格详细介绍
2013/01/03 Javascript
随鼠标上下滚动的jquery代码
2013/12/05 Javascript
原生javascript实现图片弹窗交互效果
2015/01/12 Javascript
跟我学习javascript的函数调用和构造函数调用
2015/11/16 Javascript
基于jQuery实现网页打印功能
2015/12/01 Javascript
jquery 重写 ajax提交并判断权限后 使用load方法报错解决方法
2016/01/19 Javascript
微信小程序 开发工具快捷键整理
2016/10/31 Javascript
nodejs同步调用获取mysql数据时遇到的大坑
2019/03/02 NodeJs
详解axios中封装使用、拦截特定请求、判断所有请求加载完毕)
2019/04/09 Javascript
vue 中Virtual Dom被创建的方法
2019/04/15 Javascript
使用vue cli4.x搭建vue项目的过程详解
2020/05/08 Javascript
[00:32]2018DOTA2亚洲邀请赛OpTic出场
2018/04/03 DOTA
[47:21]Liquid vs TNC Supermajor 胜者组 BO3 第一场 6.4
2018/06/05 DOTA
在Python中操作列表之List.pop()方法的使用
2015/05/21 Python
python模拟事件触发机制详解
2018/01/19 Python
python3安装speech语音模块的方法
2018/12/24 Python
django自定义非主键自增字段类型详解(auto increment field)
2020/03/30 Python
解决flask接口返回的内容中文乱码的问题
2020/04/03 Python
python如何查看安装了的模块
2020/06/23 Python
PyTorch中Tensor的数据类型和运算的使用
2020/09/03 Python
关于多种方式完美解决Python pip命令下载第三方库的问题
2020/12/21 Python
CSS3中currentColor关键字的妙用
2016/02/27 HTML / CSS
Myprotein加拿大官网:欧洲第一的运动营养品牌
2018/01/06 全球购物
杭州SQL浙江浙大网新恩普软件有限公司
2013/07/27 面试题
商务英语应届生自我鉴定
2013/12/08 职场文书
写给女生的道歉信
2014/01/14 职场文书
学历公证委托书
2014/04/09 职场文书
社区活动策划方案
2014/08/21 职场文书
关于群众路线的心得体会
2014/11/05 职场文书
离婚协议书怎么写
2015/01/26 职场文书
Golang 入门 之url 包
2022/05/04 Golang