详解Python核心编程中的浅拷贝与深拷贝


Posted in Python onJanuary 07, 2018

一、问题引出浅拷贝

首先看下面代码的执行情况:

a = [1, 2, 3]
print('a = %s' % a) # a = [1, 2, 3]
b = a
print('b = %s' % b) # b = [1, 2, 3]
a.append(4) # 对a进行修改
print('a = %s' % a) # a = [1, 2, 3, 4]
print('b = %s' % b) # b = [1, 2, 3, 4]

b.append(5) # 对b进行修改
print('a = %s' % a) # a = [1, 2, 3, 4, 5]
print('b = %s' % b) # b = [1, 2, 3, 4, 5]

上面的代码比较简单,定义了一个变量a,它是一个数值[1, 2, 3]的列表,通过一个简单的赋值语句 b = a 定义变量b,它同样也是数值[1, 2, 3]的列表。

问题是:如果此时修改变量a,对b会有影响吗?同样如果修改变量b,对a又会有影响吗?

从代码运行结果可以看出,无论是修改b还是修改a(注意这种修改的方式,是用append,直接修改原列表,而不是重新赋值),都另一方都是有影响的。

当然这个原因其实很好理解,变量a指向的是列表[1, 2, 3]的地址值,当用 = 进行赋值运算时,b的值也相应的指向的列表[1, 2, 3]的地址值。在python中,可以通过id(变量)的方法来查看地址值,我们来查看下a,b变量的地址值,看是不是相等:

# 注意,不同机器上,这个值不同,但只要a,b两个变量的地址值是一样的就能说明问题了
print(id(a)) # 4439402312
print(id(b)) # 4439402312

所以原理如下图所示:

详解Python核心编程中的浅拷贝与深拷贝

因此,只要是在地址值:4439402312上的列表进行修改的话,a,b都会发生变化。(注意我这里说的修改,是在地址值为:4439402312上的列表进行的修改,而不说对变量a进行修改,因为对变量a的修改方式有两种,本文结尾会解释为什么不说对变量a进行修改) 。所以我们便引出了以下概念:

对于这种是将引用进行拷贝赋值给另一个变量的方式(即拷贝的是地址值),我们称之为浅拷贝。

二、如何进行深拷贝

python中实现深拷贝的方式很简单,只需要引入copy模块,调用里面的deepcopy()的方法即可,示例代码如下:

import copy
a = [1, 2, 3]
b = copy.deepcopy(a)

print('a = %s' % a) # a = [1, 2, 3]
print('b = %s' % b) # b = [1, 2, 3]

b.append(4)
print('a = %s' % a) # a = [1, 2, 3]
print('b = %s' % b) # b = [1, 2, 3, 4]

从代码执行情况来看,我们已经实现了深拷贝。这时我们再来看下两个变量的地址值:

print(id(a)) # 4321416008
print(id(b)) # 4321416200

果然就不一样了。我们再通过一个图来看下深拷贝的原理:

详解Python核心编程中的浅拷贝与深拷贝

三、copy模块方法简介

从深拷贝的实现过程,我们知道copy模块,也使用了里面的deepcopy()方法。下面我们来介绍下copy模块中的copy()与deepcopy()方法。

首先介绍我们已经使用过的deepcopy()方法,官方文档介绍如下:

详解Python核心编程中的浅拷贝与深拷贝

简单解释下文档中对这个方法的说明:

1. 返回值是对这个对象的深拷贝

2. 如果拷贝发生错误,会报copy.err异常

3. 存在两个问题,第一是如果出递归对象,会递归的进行拷贝,第二正因为会递归拷贝,会导致出现拷贝过多的情况

4. 关于两种拷贝方式的区别都是相对是引用对象

前两点很好理解,针对第三点,我们用代码进行解释:

import copy
a = [1, 2, 3]
b = [3, 4, 5]
c = [a, b] # 列表嵌套
d = copy.deepcopy(c)
print('c = %s' % c) # c = [[1, 2, 3], [3, 4, 5]]
print('d = %s' % d) # d = [[1, 2, 3], [3, 4, 5]]
c.append(4)
print('c = %s' % c) # c = [[1, 2, 3], [3, 4, 5], 4]
print('d = %s' % d) # d = [[1, 2, 3], [3, 4, 5]]
c[0].append(4) # 相当于a.append(4)
print('c = %s' % c) # c = [[1, 2, 3, 4], [3, 4, 5], 4]
print('d = %s' % d) # d = [[1, 2, 3], [3, 4, 5]]
# a.append(4)
# print('c = %s' % c) # a = [1, 2, 3]
# print('d = %s' % d) # b = [1, 2, 3]
print(id(c)) # 4314188040
print(id(d)) # 4314187976
print(id(c[0])) # 4314186568
print(id(d[0])) # 4314187912
print(id(a)) # 4314186568
print(id(b)) # 4314186760

根据代码,我们可以看到,当有嵌套对象,也就是文档中提到的递归对象,从结果我们可以看到,嵌套对象会进行递归的深拷贝。即如果c里有一个a,那么不仅c会深拷贝,a同样也会被深拷贝。原理如下图所求:

详解Python核心编程中的浅拷贝与深拷贝

接下来我们再来看copy()方法:

官方文档解释的很简单,它返回的就是对象的浅拷贝。但其实它会对最外层进行深拷贝,而如果有多层,第二层以后进行的就是浅拷贝了。代码示例如下:

import copy
a = [1, 2, 3]
b = [3, 4, 5]
c = [a, b] # 列表嵌套
d = copy.copy(c)
print('c = %s' % c) # c = [[1, 2, 3], [3, 4, 5]]
print('d = %s' % d) # d = [[1, 2, 3], [3, 4, 5]]
c.append(4)
print('c = %s' % c) # c = [[1, 2, 3], [3, 4, 5], 4]
print('d = %s' % d) # d = [[1, 2, 3], [3, 4, 5]] 没有发生变化,说明外层是深拷贝
c[0].append(4) # 相当于a.append(4)
print('c = %s' % c) # c = [[1, 2, 3, 4], [3, 4, 5], 4]
print('d = %s' % d) # d = [[1, 2, 3, 4], [3, 4, 5]] 发生了变化,说明内层是浅拷贝
# a.append(4)
# print('c = %s' % c) # c = [[1, 2, 3, 4], [3, 4, 5], 4]
# print('d = %s' % d) # d = [[1, 2, 3, 4], [3, 4, 5]] 发生了变化,说明内层是浅拷贝
print(id(c)) # 4322576648
print(id(d)) # 4322576584 d和c地址不同,进一步说明外层是深拷贝
print(id(c[0])) # 4322575176
print(id(d[0])) # 4322575176 c[0]和d[0]地址相同,进一步说明内层是浅拷贝
print(id(a)) # 4322575176
print(id(b)) # 4322575368

【注意】对于copy()方法,有特殊情况,比如元组类型,代码示例如下:

import copy
a = [1, 2, 3]
b = [3, 4, 5]
c = (a, b) # 列表改成元组
d = copy.copy(c)
print(id(c)) # 4303015752
print(id(d)) # 4303015752 d和c地址相同
print(id(c[0])) # 4322575176
print(id(d[0])) # 4322575176 c[0]和d[0]地址相同,进一步说明内层是浅拷贝

可以看到,这里哪怕是最外层,也是浅拷贝。

这里因为copy方法内部有判断,如果最外层的拷贝类型是不可变类型,则进行浅拷贝,反之则进行深拷贝。

至此,我们应该对浅拷贝的概念进行进一步加深理解:

如果对象中的所有元素,有一个是引用拷贝,则定义为是浅拷贝。(该定义不是官方定义,只是个人理解)

四、关于“修改”的一点说明

前面提到了修改变量,我认为修改是有两种方式,第一种在原对象上进行修改,第二种就是重新赋值。看如下代码:

import copy
a = [1, 2, 3]
b = a
a = [3, 4, 5]
print(a) # [3, 4, 5]
print(b) # [1, 2, 3]

同样是浅拷贝,但是发现修改a之后,b没有发生变化。

在修改的时候,我们很容易想当然的通过重新赋值的方式来修改,但其实这种修改方式是有问题的。当给a再次赋值的时候,其实是将a重新指向了另外一块地址区域,而原来的[1, 2, 3]那块地址区域是没有发生任何变化的,所以对于b来说,它指向的东西并没有改变。

这也解释了之前文档中关于deepcopy方法的一个说明,为什么只对引用对象有用,因为简单类型修改的方式就是重新赋值。简单理解就是你没办法通过简单类型的变量直接通过.来调用自身的方法,都只能重新赋值来改变,那么都会指向新的地址。

详解Python核心编程中的浅拷贝与深拷贝

以上就是本片文章关于Python核心编程中的浅拷贝与深拷贝的全部内容,大家可以把学习的心得写在下面的留言区,感谢你对三水点靠木的支持。

Python 相关文章推荐
一个检测OpenSSL心脏出血漏洞的Python脚本分享
Apr 10 Python
在Django的视图(View)外使用Session的方法
Jul 23 Python
python 基础教程之Map使用方法
Jan 17 Python
Python读取txt内容写入xls格式excel中的方法
Oct 11 Python
django的ORM模型的实现原理
Mar 04 Python
使用Python脚本从文件读取数据代码实例
Jan 19 Python
浅谈Pycharm最有必要改的几个默认设置项
Feb 14 Python
python GUI库图形界面开发之PyQt5浏览器控件QWebEngineView详细使用方法
Feb 26 Python
Python连接mysql方法及常用参数
Sep 01 Python
浅谈Python描述数据结构之KMP篇
Sep 06 Python
Python爬虫之Selenium鼠标事件的实现
Dec 04 Python
python中re模块知识点总结
Jan 17 Python
用python实现的线程池实例代码
Jan 06 #Python
pip matplotlib报错equired packages can not be built解决
Jan 06 #Python
Python实现的朴素贝叶斯分类器示例
Jan 06 #Python
Python使用matplotlib绘制正弦和余弦曲线的方法示例
Jan 06 #Python
Python爬虫中urllib库的进阶学习
Jan 05 #Python
浅谈django model postgres的json字段编码问题
Jan 05 #Python
django admin添加数据自动记录user到表中的实现方法
Jan 05 #Python
You might like
深入了解php4(1)--回到未来
2006/10/09 PHP
可以在线执行PHP代码包装修正版
2008/03/15 PHP
php中的观察者模式
2010/03/24 PHP
php中jpgraph类库的使用介绍
2013/08/08 PHP
php将csv文件导入到mysql数据库的方法
2014/12/24 PHP
CI框架集成Smarty的方法分析
2016/05/17 PHP
PHP获取二叉树镜像的方法
2018/01/17 PHP
PHP设计模式之数据访问对象模式(DAO)原理与用法实例分析
2019/12/12 PHP
javascript重写alert方法的实例代码
2013/03/29 Javascript
js动画效果制件让图片组成动画代码分享
2014/01/14 Javascript
ExtJS4给Combobox设置列表中的默认值示例
2014/05/02 Javascript
ext combobox动态加载数据库数据(附前后台)
2014/06/17 Javascript
js使用for循环及if语句判断多个一样的name
2014/09/09 Javascript
jquery常用方法及使用示例汇总
2014/11/08 Javascript
纯JS实现旋转图片3D展示效果
2015/04/12 Javascript
JavaScript禁止用户多次提交的两种方法
2016/07/24 Javascript
jQuery设计思想
2017/03/07 Javascript
vue 2.8.2版本配置刚进入时候的默认页面方法
2018/09/21 Javascript
解决Vue开发中对话框被遮罩层挡住的问题
2018/11/26 Javascript
layui的布局和表格的渲染以及动态生成表格的方法
2019/09/18 Javascript
vant 解决tab切换插件标题样式自定义的问题
2020/11/13 Javascript
在Python的web框架中编写创建日志的程序的教程
2015/04/30 Python
PyChar学习教程之自定义文件与代码模板详解
2017/07/17 Python
Python下载网络文本数据到本地内存的四种实现方法示例
2018/02/05 Python
Python基于dom操作xml数据的方法示例
2018/05/12 Python
通过PHP与Python代码对比的语法差异详解
2019/07/10 Python
python实现通过flask和前端进行数据收发
2019/08/22 Python
Python类的绑定方法和非绑定方法实例解析
2020/03/04 Python
python实现贪吃蛇游戏源码
2020/03/21 Python
python和pywin32实现窗口查找、遍历和点击的示例代码
2020/04/01 Python
详解css3 Transition属性(平滑过渡菜单栏案例)
2017/09/05 HTML / CSS
使用spring mvc+localResizeIMG实现HTML5端图片压缩上传的功能
2016/12/16 HTML / CSS
金融专业大学生职业生涯规划范文
2014/01/16 职场文书
人力资源管理专业自荐信
2014/06/24 职场文书
2015年电话客服工作总结
2015/05/18 职场文书
2016高一新生军训心得体会
2016/01/11 职场文书