使用python生成大量数据写入es数据库并查询操作(2)


Posted in Python onSeptember 23, 2022

前言 :

模拟学生个人信息写入es数据库,包括姓名、性别、年龄、特点、科目、成绩,创建时间。

方案一

在写入数据时未提前创建索引mapping,而是每插入一条数据都包含了索引的信息。

示例代码:【多线程写入数据】【一次性写入10000*1000条数据】  【本人亲测耗时3266秒】

from elasticsearch import Elasticsearch
from elasticsearch import helpers
from datetime import datetime
from queue import Queue
import random
import time
import threading
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
 
names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十']
sexs = ['男', '女']
age = [25, 28, 29, 32, 31, 26, 27, 30]
character = ['自信但不自负,不以自我为中心',
             '努力、积极、乐观、拼搏是我的人生信条',
             '抗压能力强,能够快速适应周围环境',
             '敢做敢拼,脚踏实地;做事认真负责,责任心强',
             '爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情',
             '主动性强,自学能力强,具有团队合作意识,有一定组织能力',
             '忠实诚信,讲原则,说到做到,决不推卸责任',
             '有自制力,做事情始终坚持有始有终,从不半途而废',
             '肯学习,有问题不逃避,愿意虚心向他人学习',
             '愿意以谦虚态度赞扬接纳优越者,权威者',
             '会用100%的热情和精力投入到工作中;平易近人',
             '为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地',
             '有较强的团队精神,工作积极进取,态度认真']
subjects = ['语文', '数学', '英语', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 
def save_to_es(num):
    """
    批量写入数据到es数据库
    :param num:
    :return:
    """
    start = time.time()
    action = [
        {
            "_index": "personal_info_10000000",
            "_type": "doc",
            "_id": i,
            "_source": {
                "id": i,
                "name": random.choice(names),
                "sex": random.choice(sexs),
                "age": random.choice(age),
                "character": random.choice(character),
                "subject": random.choice(subjects),
                "grade": random.choice(grades),
                "create_time": create_time
            }
        } for i in range(10000 * num, 10000 * num + 10000)
    ]
    helpers.bulk(es, action)
    end = time.time()
    print(f"{num}耗时{end - start}s!")
 
def run():
    global queue
    while queue.qsize() > 0:
        num = queue.get()
        print(num)
        save_to_es(num)

if __name__ == '__main__':
    start = time.time()
    queue = Queue()
    # 序号数据进队列
    for num in range(1000):
        queue.put(num)
 
    # 多线程执行程序
    consumer_lst = []
    for _ in range(10):
        thread = threading.Thread(target=run)
        thread.start()
        consumer_lst.append(thread)
    for consumer in consumer_lst:
        consumer.join()
    end = time.time()
    print('程序执行完毕!花费时间:', end - start)

运行结果:

使用python生成大量数据写入es数据库并查询操作(2)

使用python生成大量数据写入es数据库并查询操作(2)

使用python生成大量数据写入es数据库并查询操作(2)

 自动创建的索引mapping:

GET personal_info_10000000/_mapping
{
  "personal_info_10000000" : {
    "mappings" : {
      "properties" : {
        "age" : {
          "type" : "long"
        },
        "character" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "create_time" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "grade" : {
          "type" : "long"
        },
        "id" : {
          "type" : "long"
        },
        "name" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "sex" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "subject" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        }
      }
    }
  }
}

方案二

1.顺序插入5000000条数据

先创建索引personal_info_5000000,确定好mapping后,再插入数据。

新建索引并设置mapping信息:

PUT personal_info_5000000
{
  "settings": {
    "number_of_shards": 3,
    "number_of_replicas": 1
  },
  "mappings": {
    "properties": {
      "id": {
        "type": "long"
      },
      "name": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 32
          }
        }
      },
      "sex": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 8
          }
        }
      },
      "age": {
        "type": "long"
      },
      "character": {
        "type": "text",
        "analyzer": "ik_smart",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "subject": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "grade": {
        "type": "long"
      },
      "create_time": {
        "type": "date",
        "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
      }
    }
  }
}

查看新建索引信息:

GET personal_info_5000000
 
{
  "personal_info_5000000" : {
    "aliases" : { },
    "mappings" : {
      "properties" : {
        "age" : {
          "type" : "long"
        },
        "character" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "analyzer" : "ik_smart"
        },
        "create_time" : {
          "type" : "date",
          "format" : "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
        },
        "grade" : {
          "type" : "long"
        },
        "id" : {
          "type" : "long"
        },
        "name" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 32
            }
          }
        },
        "sex" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 8
            }
          }
        },
        "subject" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        }
      }
    },
    "settings" : {
      "index" : {
        "routing" : {
          "allocation" : {
            "include" : {
              "_tier_preference" : "data_content"
            }
          }
        },
        "number_of_shards" : "3",
        "provided_name" : "personal_info_50000000",
        "creation_date" : "1663471072176",
        "number_of_replicas" : "1",
        "uuid" : "5DfmfUhUTJeGk1k4XnN-lQ",
        "version" : {
          "created" : "7170699"
        }
      }
    }
  }
}

开始插入数据:

示例代码: 【单线程写入数据】【一次性写入10000*500条数据】  【本人亲测耗时7916秒】

from elasticsearch import Elasticsearch
from datetime import datetime
from queue import Queue
import random
import time
import threading
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十']
sexs = ['男', '女']
age = [25, 28, 29, 32, 31, 26, 27, 30]
character = ['自信但不自负,不以自我为中心',
             '努力、积极、乐观、拼搏是我的人生信条',
             '抗压能力强,能够快速适应周围环境',
             '敢做敢拼,脚踏实地;做事认真负责,责任心强',
             '爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情',
             '主动性强,自学能力强,具有团队合作意识,有一定组织能力',
             '忠实诚信,讲原则,说到做到,决不推卸责任',
             '有自制力,做事情始终坚持有始有终,从不半途而废',
             '肯学习,有问题不逃避,愿意虚心向他人学习',
             '愿意以谦虚态度赞扬接纳优越者,权威者',
             '会用100%的热情和精力投入到工作中;平易近人',
             '为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地',
             '有较强的团队精神,工作积极进取,态度认真']
subjects = ['语文', '数学', '英语', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 
# 添加程序耗时的功能
def timer(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        res = func(*args, **kwargs)
        end = time.time()
        print('id{}共耗时约 {:.2f} 秒'.format(*args, end - start))
        return res
 
    return wrapper
 
@timer
def save_to_es(num):
    """
    顺序写入数据到es数据库
    :param num:
    :return:
    """
    body = {
        "id": num,
        "name": random.choice(names),
        "sex": random.choice(sexs),
        "age": random.choice(age),
        "character": random.choice(character),
        "subject": random.choice(subjects),
        "grade": random.choice(grades),
        "create_time": create_time
    }
    # 此时若索引不存在时会新建
    es.index(index="personal_info_5000000", id=num, doc_type="_doc", document=body)
 
def run():
    global queue
    while queue.qsize() > 0:
        num = queue.get()
        print(num)
        save_to_es(num)
 
if __name__ == '__main__':
    start = time.time()
    queue = Queue()
    # 序号数据进队列
    for num in range(5000000):
        queue.put(num)
 
    # 多线程执行程序
    consumer_lst = []
    for _ in range(10):
        thread = threading.Thread(target=run)
        thread.start()
        consumer_lst.append(thread)
    for consumer in consumer_lst:
        consumer.join()
    end = time.time()
    print('程序执行完毕!花费时间:', end - start)

运行结果:

使用python生成大量数据写入es数据库并查询操作(2)

2.批量插入5000000条数据

先创建索引personal_info_5000000_v2,确定好mapping后,再插入数据。

新建索引并设置mapping信息:

PUT personal_info_5000000_v2
{
  "settings": {
    "number_of_shards": 3,
    "number_of_replicas": 1
  },
  "mappings": {
    "properties": {
      "id": {
        "type": "long"
      },
      "name": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 32
          }
        }
      },
      "sex": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 8
          }
        }
      },
      "age": {
        "type": "long"
      },
      "character": {
        "type": "text",
        "analyzer": "ik_smart",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "subject": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "grade": {
        "type": "long"
      },
      "create_time": {
        "type": "date",
        "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
      }
    }
  }
}

查看新建索引信息:

GET personal_info_5000000_v2
 
{
  "personal_info_5000000_v2" : {
    "aliases" : { },
    "mappings" : {
      "properties" : {
        "age" : {
          "type" : "long"
        },
        "character" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "analyzer" : "ik_smart"
        },
        "create_time" : {
          "type" : "date",
          "format" : "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
        },
        "grade" : {
          "type" : "long"
        },
        "id" : {
          "type" : "long"
        },
        "name" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 32
            }
          }
        },
        "sex" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 8
            }
          }
        },
        "subject" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        }
      }
    },
    "settings" : {
      "index" : {
        "routing" : {
          "allocation" : {
            "include" : {
              "_tier_preference" : "data_content"
            }
          }
        },
        "number_of_shards" : "3",
        "provided_name" : "personal_info_5000000_v2",
        "creation_date" : "1663485323617",
        "number_of_replicas" : "1",
        "uuid" : "XBPaDn_gREmAoJmdRyBMAA",
        "version" : {
          "created" : "7170699"
        }
      }
    }
  }
}

批量插入数据:

通过elasticsearch模块导入helper,通过helper.bulk来批量处理大量的数据。首先将所有的数据定义成字典形式,各字段含义如下:

  • _index对应索引名称,并且该索引必须存在。
  • _type对应类型名称。
  • _source对应的字典内,每一篇文档的字段和值,可有有多个字段。

示例代码:  【程序中途异常,写入4714000条数据】

from elasticsearch import Elasticsearch
from elasticsearch import helpers
from datetime import datetime
from queue import Queue
import random
import time
import threading
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十']
sexs = ['男', '女']
age = [25, 28, 29, 32, 31, 26, 27, 30]
character = ['自信但不自负,不以自我为中心',
             '努力、积极、乐观、拼搏是我的人生信条',
             '抗压能力强,能够快速适应周围环境',
             '敢做敢拼,脚踏实地;做事认真负责,责任心强',
             '爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情',
             '主动性强,自学能力强,具有团队合作意识,有一定组织能力',
             '忠实诚信,讲原则,说到做到,决不推卸责任',
             '有自制力,做事情始终坚持有始有终,从不半途而废',
             '肯学习,有问题不逃避,愿意虚心向他人学习',
             '愿意以谦虚态度赞扬接纳优越者,权威者',
             '会用100%的热情和精力投入到工作中;平易近人',
             '为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地',
             '有较强的团队精神,工作积极进取,态度认真']
subjects = ['语文', '数学', '英语', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
# 添加程序耗时的功能
def timer(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        res = func(*args, **kwargs)
        end = time.time()
        print('id{}共耗时约 {:.2f} 秒'.format(*args, end - start))
        return res
 
    return wrapper
 
 
@timer
def save_to_es(num):
    """
    批量写入数据到es数据库
    :param num:
    :return:
    """
    action = [
        {
            "_index": "personal_info_5000000_v2",
            "_type": "_doc",
            "_id": i,
            "_source": {
                "id": i,
                "name": random.choice(names),
                "sex": random.choice(sexs),
                "age": random.choice(age),
                "character": random.choice(character),
                "subject": random.choice(subjects),
                "grade": random.choice(grades),
                "create_time": create_time
            }
        } for i in range(10000 * num, 10000 * num + 10000)
    ]
    helpers.bulk(es, action)
def run():
    global queue
    while queue.qsize() > 0:
        num = queue.get()
        print(num)
        save_to_es(num)
if __name__ == '__main__':
    start = time.time()
    queue = Queue()
    # 序号数据进队列
    for num in range(500):
        queue.put(num)
 
    # 多线程执行程序
    consumer_lst = []
    for _ in range(10):
        thread = threading.Thread(target=run)
        thread.start()
        consumer_lst.append(thread)
    for consumer in consumer_lst:
        consumer.join()
    end = time.time()
    print('程序执行完毕!花费时间:', end - start)

运行结果:

使用python生成大量数据写入es数据库并查询操作(2)

使用python生成大量数据写入es数据库并查询操作(2)

3.批量插入50000000条数据

先创建索引personal_info_5000000_v2,确定好mapping后,再插入数据。

此过程是在上面批量插入的前提下进行优化,采用python生成器。

建立索引和mapping同上,直接上代码:

示例代码: 【程序中途异常,写入3688000条数据】

from elasticsearch import Elasticsearch
from elasticsearch import helpers
from datetime import datetime
from queue import Queue
import random
import time
import threading
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
 
names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十']
sexs = ['男', '女']
age = [25, 28, 29, 32, 31, 26, 27, 30]
character = ['自信但不自负,不以自我为中心',
             '努力、积极、乐观、拼搏是我的人生信条',
             '抗压能力强,能够快速适应周围环境',
             '敢做敢拼,脚踏实地;做事认真负责,责任心强',
             '爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情',
             '主动性强,自学能力强,具有团队合作意识,有一定组织能力',
             '忠实诚信,讲原则,说到做到,决不推卸责任',
             '有自制力,做事情始终坚持有始有终,从不半途而废',
             '肯学习,有问题不逃避,愿意虚心向他人学习',
             '愿意以谦虚态度赞扬接纳优越者,权威者',
             '会用100%的热情和精力投入到工作中;平易近人',
             '为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地',
             '有较强的团队精神,工作积极进取,态度认真']
subjects = ['语文', '数学', '英语', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
 
# 添加程序耗时的功能
def timer(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        res = func(*args, **kwargs)
        end = time.time()
        print('id{}共耗时约 {:.2f} 秒'.format(*args, end - start))
        return res
 
    return wrapper
@timer
def save_to_es(num):
    """
    使用生成器批量写入数据到es数据库
    :param num:
    :return:
    """
    action = (
        {
            "_index": "personal_info_5000000_v3",
            "_type": "_doc",
            "_id": i,
            "_source": {
                "id": i,
                "name": random.choice(names),
                "sex": random.choice(sexs),
                "age": random.choice(age),
                "character": random.choice(character),
                "subject": random.choice(subjects),
                "grade": random.choice(grades),
                "create_time": create_time
            }
        } for i in range(10000 * num, 10000 * num + 10000)
    )
    helpers.bulk(es, action)
 
def run():
    global queue
    while queue.qsize() > 0:
        num = queue.get()
        print(num)
        save_to_es(num)
 
if __name__ == '__main__':
    start = time.time()
    queue = Queue()
    # 序号数据进队列
    for num in range(500):
        queue.put(num)
 
    # 多线程执行程序
    consumer_lst = []
    for _ in range(10):
        thread = threading.Thread(target=run)
        thread.start()
        consumer_lst.append(thread)
    for consumer in consumer_lst:
        consumer.join()
    end = time.time()
    print('程序执行完毕!花费时间:', end - start)

运行结果:

使用python生成大量数据写入es数据库并查询操作(2)

使用python生成大量数据写入es数据库并查询操作(2)

到此这篇关于使用python生成大量数据写入es数据库并查询操作(2)的文章就介绍到这了,更多相关python生成 数据 内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现向ppt文件里插入新幻灯片页面的方法
Apr 28 Python
在Python的Django框架中simple-todo工具的简单使用
May 30 Python
学习python中matplotlib绘图设置坐标轴刻度、文本
Feb 07 Python
python 格式化输出百分号的方法
Jan 20 Python
python numpy实现文件存取的示例代码
May 26 Python
python如何删除文件中重复的字段
Jul 16 Python
Transpose 数组行列转置的限制方式
Feb 11 Python
Python3打包exe代码2种方法实例解析
Feb 17 Python
python判断两个序列的成员是否一样的实例代码
Mar 01 Python
python Canny边缘检测算法的实现
Apr 24 Python
30行Python代码实现高分辨率图像导航的方法
May 22 Python
pandas中关于apply+lambda的应用
Feb 28 Python
Python sklearn分类决策树方法详解
详解Golang如何实现支持随机删除元素的堆
python中validators库的使用方法详解
Sep 23 #Python
Python pyecharts案例超市4年数据可视化分析
Aug 14 #Python
Python编写车票订购系统 Python实现快递收费系统
Aug 14 #Python
Golang Web 框架Iris安装部署
Aug 14 #Python
python manim实现排序算法动画示例
You might like
《DOTA3》开发工作已经开始 《DOTA3》将代替《DOTA2》
2021/03/06 DOTA
php 获取远程网页内容的函数
2009/09/08 PHP
php mysql 判断update之后是否更新了的方法
2012/01/10 PHP
php实现图片上传时添加文字和图片水印技巧
2020/04/18 PHP
jquery 日期分离成年月日的代码
2010/05/14 Javascript
精通Javascript系列之Javascript基础篇
2011/06/07 Javascript
js之事件冒泡和事件捕获详细介绍
2013/10/28 Javascript
jquery数组之存放checkbox全选值示例代码
2013/12/20 Javascript
自定义jQuery插件方式实现强制对象重绘的方法
2015/03/23 Javascript
JavaScript实现数字数组正序排列的方法
2015/04/06 Javascript
js贪吃蛇网页版游戏特效代码分享(挑战十关)
2015/08/24 Javascript
js实现文字垂直滚动和鼠标悬停效果
2015/12/31 Javascript
JavaScript类型检测之typeof 和 instanceof 的缺陷与优化
2016/01/13 Javascript
BootStrap创建响应式导航条实例代码
2016/05/31 Javascript
windows 下安装nodejs 环境变量设置
2017/02/02 NodeJs
在vue中使用jointjs的方法
2018/03/24 Javascript
Element MessageBox弹框的具体使用
2020/07/27 Javascript
详解JavaScript 事件流
2020/09/02 Javascript
pandas 将list切分后存入DataFrame中的实例
2018/07/03 Python
解决python xlrd无法读取excel文件的问题
2018/12/25 Python
python连接、操作mongodb数据库的方法实例详解
2019/09/11 Python
python自动化unittest yaml使用过程解析
2020/02/03 Python
python GUI库图形界面开发之PyQt5信号与槽基本操作
2020/02/25 Python
Python flask框架实现浏览器点击自定义跳转页面
2020/06/04 Python
python实现从ftp上下载文件的实例方法
2020/07/19 Python
欧舒丹英国官网:购买欧舒丹护手霜等明星产品
2017/01/17 全球购物
美国彩妆品牌:Coastal Scents
2017/04/01 全球购物
美国领先的在线邮轮旅游公司:CruiseDirect
2018/06/07 全球购物
局部内部类是否可以访问非final变量?
2013/04/20 面试题
Java基础知识面试要点
2016/07/29 面试题
物业经理自我鉴定
2014/03/03 职场文书
歌颂党的演讲稿
2014/09/10 职场文书
2014年作风建设心得体会
2014/10/22 职场文书
骨干教师事迹材料
2014/12/17 职场文书
党员干部学法用法心得体会
2016/01/21 职场文书
2016年教师师德师风承诺书
2016/03/25 职场文书