Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作


Posted in Python onMay 25, 2021

使用keras实现CNN,直接上代码:

from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
 
class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = {'batch':[], 'epoch':[]}
        self.accuracy = {'batch':[], 'epoch':[]}
        self.val_loss = {'batch':[], 'epoch':[]}
        self.val_acc = {'batch':[], 'epoch':[]}
 
    def on_batch_end(self, batch, logs={}):
        self.losses['batch'].append(logs.get('loss'))
        self.accuracy['batch'].append(logs.get('acc'))
        self.val_loss['batch'].append(logs.get('val_loss'))
        self.val_acc['batch'].append(logs.get('val_acc'))
 
    def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        self.val_acc['epoch'].append(logs.get('val_acc'))
 
    def loss_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure()
        # acc
        plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        # loss
        plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
        if loss_type == 'epoch':
            # val_acc
            plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
            # val_loss
            plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('acc-loss')
        plt.legend(loc="upper right")
        plt.show()
 
history = LossHistory()
 
batch_size = 128
nb_classes = 10
nb_epoch = 20
img_rows, img_cols = 28, 28
nb_filters = 32
pool_size = (2,2)
kernel_size = (3,3)
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
 
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
 
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
 
model3 = Sequential()
 
model3.add(Convolution2D(nb_filters, kernel_size[0] ,kernel_size[1],
                        border_mode='valid',
                        input_shape=input_shape))
model3.add(Activation('relu'))
 
model3.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model3.add(Activation('relu'))
 
model3.add(MaxPooling2D(pool_size=pool_size))
model3.add(Dropout(0.25))
 
model3.add(Flatten())
 
model3.add(Dense(128))
model3.add(Activation('relu'))
model3.add(Dropout(0.5))
 
model3.add(Dense(nb_classes))
model3.add(Activation('softmax'))
 
model3.summary()
 
model3.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])
 
model3.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch,
          verbose=1, validation_data=(X_test, Y_test),callbacks=[history])
 
score = model3.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
 
#acc-loss
history.loss_plot('epoch')

补充:使用keras全连接网络训练mnist手写数字识别并输出可视化训练过程以及预测结果

前言

mnist 数字识别问题的可以直接使用全连接实现但是效果并不像CNN卷积神经网络好。Keras是目前最为广泛的深度学习工具之一,底层可以支持Tensorflow、MXNet、CNTK、Theano

准备工作

TensorFlow版本:1.13.1

Keras版本:2.1.6

Numpy版本:1.18.0

matplotlib版本:2.2.2

导入所需的库

from keras.layers import Dense,Flatten,Dropout
from keras.datasets import mnist
from keras import Sequential
import matplotlib.pyplot as plt
import numpy as np

Dense输入层作为全连接,Flatten用于全连接扁平化操作(也就是将二维打成一维),Dropout避免过拟合。使用datasets中的mnist的数据集,Sequential用于构建模型,plt为可视化,np用于处理数据。

划分数据集

# 训练集       训练集标签       测试集      测试集标签
(train_image,train_label),(test_image,test_label) = mnist.load_data()
print('shape:',train_image.shape)   #查看训练集的shape
plt.imshow(train_image[0])    #查看第一张图片
print('label:',train_label[0])      #查看第一张图片对应的标签
plt.show()

输出shape以及标签label结果:

Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

查看mnist数据集中第一张图片:

Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

数据归一化

train_image = train_image.astype('float32')
test_image = test_image.astype('float32')
train_image /= 255.0
test_image /= 255.0

将数据归一化,以便于训练的时候更快的收敛。

模型构建

#初始化模型(模型的优化 ---> 增大网络容量,直到过拟合)
model = Sequential()
model.add(Flatten(input_shape=(28,28)))    #将二维扁平化为一维(60000,28,28)---> (60000,28*28)输入28*28个神经元
model.add(Dropout(0.1))
model.add(Dense(1024,activation='relu'))   #全连接层 输出64个神经元 ,kernel_regularizer=l2(0.0003)
model.add(Dropout(0.1))
model.add(Dense(512,activation='relu'))    #全连接层
model.add(Dropout(0.1))
model.add(Dense(256,activation='relu'))    #全连接层
model.add(Dropout(0.1))
model.add(Dense(10,activation='softmax'))  #输出层,10个类别,用softmax分类

每层使用一次Dropout防止过拟合,激活函数使用relu,最后一层Dense神经元设置为10,使用softmax作为激活函数,因为只有0-9个数字。如果是二分类问题就使用sigmod函数来处理。

编译模型

#编译模型
model.compile(
    optimizer='adam',      #优化器使用默认adam
    loss='sparse_categorical_crossentropy', #损失函数使用sparse_categorical_crossentropy
    metrics=['acc']       #评价指标
)

sparse_categorical_crossentropy与categorical_crossentropy的区别:

sparse_categorical_crossentropy要求target为非One-hot编码,函数内部进行One-hot编码实现。

categorical_crossentropy要求target为One-hot编码。

One-hot格式如: [0,0,0,0,0,1,0,0,0,0] = 5

训练模型

#训练模型
history = model.fit(
    x=train_image,                          #训练的图片
    y=train_label,                          #训练的标签
    epochs=10,                              #迭代10次
    batch_size=512,                         #划分批次
    validation_data=(test_image,test_label) #验证集
)

迭代10次后的结果:

Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

绘制loss、acc图

#绘制loss acc图
plt.figure()
plt.plot(history.history['acc'],label='training acc')
plt.plot(history.history['val_acc'],label='val acc')
plt.title('model acc')
plt.ylabel('acc')
plt.xlabel('epoch')
plt.legend(loc='lower right')
plt.figure()
plt.plot(history.history['loss'],label='training loss')
plt.plot(history.history['val_loss'],label='val loss')
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(loc='upper right')
plt.show()

绘制出的loss变化图:

Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

绘制出的acc变化图:

Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

预测结果

print("前十个图片对应的标签: ",test_label[:10]) #前十个图片对应的标签
print("取前十张图片测试集预测:",np.argmax(model.predict(test_image[:10]),axis=1)) #取前十张图片测试集预测

打印的结果:

Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

可看到在第9个数字预测错了,标签为5的,预测成了6,为了避免这种问题可以适当的加深网络结构,或使用CNN模型。

保存模型

model.save('./mnist_model.h5')

完整代码

from keras.layers import Dense,Flatten,Dropout
from keras.datasets import mnist
from keras import Sequential
import matplotlib.pyplot as plt
import numpy as np
# 训练集       训练集标签       测试集      测试集标签
(train_image,train_label),(test_image,test_label) = mnist.load_data()
# print('shape:',train_image.shape)   #查看训练集的shape
# plt.imshow(train_image[0]) #查看第一张图片
# print('label:',train_label[0])      #查看第一张图片对应的标签
# plt.show()
#归一化(收敛)
train_image = train_image.astype('float32')
test_image = test_image.astype('float32')
train_image /= 255.0
test_image /= 255.0
#初始化模型(模型的优化 ---> 增大网络容量,直到过拟合)
model = Sequential()
model.add(Flatten(input_shape=(28,28)))   #将二维扁平化为一维(60000,28,28)---> (60000,28*28)输入28*28个神经元
model.add(Dropout(0.1))
model.add(Dense(1024,activation='relu'))    #全连接层 输出64个神经元 ,kernel_regularizer=l2(0.0003)
model.add(Dropout(0.1))
model.add(Dense(512,activation='relu'))    #全连接层
model.add(Dropout(0.1))
model.add(Dense(256,activation='relu'))    #全连接层
model.add(Dropout(0.1))
model.add(Dense(10,activation='softmax')) #输出层,10个类别,用softmax分类
#编译模型
model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',
    metrics=['acc']
)
#训练模型
history = model.fit(
    x=train_image,                          #训练的图片
    y=train_label,                          #训练的标签
    epochs=10,                              #迭代10次
    batch_size=512,                         #划分批次
    validation_data=(test_image,test_label) #验证集
)
#绘制loss acc 图
plt.figure()
plt.plot(history.history['acc'],label='training acc')
plt.plot(history.history['val_acc'],label='val acc')
plt.title('model acc')
plt.ylabel('acc')
plt.xlabel('epoch')
plt.legend(loc='lower right')
plt.figure()
plt.plot(history.history['loss'],label='training loss')
plt.plot(history.history['val_loss'],label='val loss')
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(loc='upper right')
plt.show()
print("前十个图片对应的标签: ",test_label[:10]) #前十个图片对应的标签
print("取前十张图片测试集预测:",np.argmax(model.predict(test_image[:10]),axis=1)) #取前十张图片测试集预测
#优化前(一个全连接层(隐藏层))
#- 1s 12us/step - loss: 1.8765 - acc: 0.8825
# [7 2 1 0 4 1 4 3 5 4]
# [7 2 1 0 4 1 4 9 5 9]
#优化后(三个全连接层(隐藏层))
#- 1s 14us/step - loss: 0.0320 - acc: 0.9926 - val_loss: 0.2530 - val_acc: 0.9655
# [7 2 1 0 4 1 4 9 5 9]
# [7 2 1 0 4 1 4 9 5 9]
model.save('./model_nameALL.h5')

总结

使用全连接层训练得到的最后结果train_loss: 0.0242 - train_acc: 0.9918 - val_loss: 0.0560 - val_acc: 0.9826,由loss acc可视化图可以看出训练有着明显的效果。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
pycharm 使用心得(七)一些实用功能介绍
Jun 06 Python
详解Python的迭代器、生成器以及相关的itertools包
Apr 02 Python
Python中import导入上一级目录模块及循环import问题的解决
Jun 04 Python
20招让你的Python飞起来!
Sep 27 Python
python opencv之SIFT算法示例
Feb 24 Python
在python里协程使用同步锁Lock的实例
Feb 19 Python
centos7之Python3.74安装教程
Aug 15 Python
Python 解决OPEN读文件报错 ,路径以及r的问题
Dec 19 Python
python如何更新包
Jun 11 Python
用python批量移动文件
Jan 14 Python
JAVA SpringMVC实现自定义拦截器
Mar 16 Python
python神经网络学习 使用Keras进行简单分类
May 04 Python
python编写五子棋游戏
浅谈python数据类型及其操作
对Keras自带Loss Function的深入研究
May 25 #Python
pytorch中的model=model.to(device)使用说明
May 24 #Python
解决pytorch-gpu 安装失败的记录
May 24 #Python
如何解决.cuda()加载用时很长的问题
一劳永逸彻底解决pip install慢的办法
May 24 #Python
You might like
php入门学习知识点七 PHP函数的基本应用
2011/07/14 PHP
你可能不知道PHP get_meta_tags()函数
2014/05/12 PHP
php实现的http请求封装示例
2016/11/08 PHP
浅谈php中的访问修饰符private、protected、public的作用范围
2016/11/20 PHP
Thinkphp事务操作实例(推荐)
2017/04/01 PHP
Laravel 实现密码重置功能
2018/02/23 PHP
js 跨域和ajax 跨域问题小结
2009/07/01 Javascript
详解强大的jQuery选择器之基本选择器、层次选择器
2012/02/07 Javascript
JavaScript 更严格的相等 [译]
2012/09/20 Javascript
基于jQuery实现下拉收缩(展开与折叠)特效
2012/12/25 Javascript
IE下window.onresize 多次调用与死循环bug处理方法介绍
2013/11/12 Javascript
JS实现的竖向折叠菜单代码
2015/10/21 Javascript
jQuery继承extend用法详解
2016/10/10 Javascript
Bootstrap基本样式学习笔记之表单(3)
2016/12/07 Javascript
Angular使用ng-messages与PHP进行表单数据验证
2016/12/28 Javascript
Jquery实现跨域异步上传文件总结
2017/02/03 Javascript
jQuery基于Ajax方式提交表单功能示例
2017/02/10 Javascript
理解javascript async的用法
2017/08/22 Javascript
nodejs实现简单的gulp打包
2017/12/21 NodeJs
不到200行 JavaScript 代码实现富文本编辑器的方法
2018/01/03 Javascript
JS和Canvas实现图片的预览压缩和上传功能
2018/03/30 Javascript
Python中3种内建数据结构:列表、元组和字典
2014/11/30 Python
Python中关键字nonlocal和global的声明与解析
2017/03/12 Python
Python计算斗牛游戏概率算法实例分析
2017/09/26 Python
numpy中实现二维数组按照某列、某行排序的方法
2018/04/04 Python
Python 实现王者荣耀中的敏感词过滤示例
2019/01/21 Python
在python中logger setlevel没有生效的解决
2020/02/21 Python
描述JSP和Servlet的区别、共同点、各自应用的范围
2012/10/02 面试题
采购主管岗位职责
2014/02/01 职场文书
教师中国梦演讲稿
2014/04/23 职场文书
六一儿童节演讲稿
2014/05/23 职场文书
旅游与酒店管理专业求职信
2014/07/21 职场文书
简单的个人租房协议书范本
2014/11/26 职场文书
2015年高中生国庆节演讲稿
2015/07/30 职场文书
MySQL 使用SQL语句修改表名的实现
2021/04/07 MySQL
总结一下关于在Java8中使用stream流踩过的一些坑
2021/06/24 Java/Android