python神经网络编程之手写数字识别


Posted in Python onMay 08, 2021

写在之前

首先是写在之前的一些建议:

首先是关于这本书,我真的认为他是将神经网络里非常棒的一本书,但你也需要注意,如果你真的想自己动手去实现,那么你一定需要有一定的python基础,并且还需要有一些python数据科学处理能力

然后希望大家在看这边博客的时候对于神经网络已经有一些了解了,知道什么是输入层,什么是输出层,并且明白他们的一些理论,在这篇博客中我们仅仅是展开一下代码;

然后介绍一下本篇博客的环境等:

语言:Python3.8.5

环境:jupyter

库文件: numpy | matplotlib | scipy

一、代码框架

我们即将设计一个神经网络对象,它可以帮我们去做数据的训练,以及数据的预测,所以我们将具有以下的三个方法:

首先我们需要初始化这个函数,我们希望这个神经网络仅有三层,因为再多也不过是在隐藏层去做文章,所以先做一个简单的。那么我们需要知道我们输入层、隐藏层和输出层的节点个数;训练函数,我们需要去做训练,得到我们需要的权重。通过我们已有的权重,将给定的输入去做输出。

二、准备工作

现在我们需要准备一下:

1.将我们需要的库导入

import numpy as np
import scipy.special as spe
import matplotlib.pyplot as plt

2.构建一个类

class neuralnetwork:
    # 我们需要去初始化一个神经网络
    
    def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
        pass
        
        
    def train(self, inputs_list, targets_list):
        pass
        
    
    def query(self, inputs_list):
        pass

3.我们的主函数

input_nodes = 784    # 输入层的节点数
hidden_nodes = 88    # 隐藏层的节点数
output_nodes = 10    # 输出层的节点数

learn_rate = 0.05    # 学习率

n = neuralnetwork(input_nodes, hidden_nodes, output_nodes, learn_rate)

4.导入文件

data_file = open("E:\sklearn_data\神经网络数字识别\mnist_train.csv", 'r')
data_list = data_file.readlines()
data_file.close()
file2 = open("E:\sklearn_data\神经网络数字识别\mnist_test.csv")
answer_data = file2.readlines()
file2.close()

这里需要介绍以下这个数据集,训练集在这里,测试集在这里

三、框架的开始

def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
        
        self.inodes = inputnodes   # 输入层节点设定
        self.hnodes = hiddennodes  # 影藏层节点设定
        self.onodes = outputnodes  # 输出层节点设定
        
        self.lr = learningrate     # 学习率设定,这里可以改进的
        
        self.wih = (np.random.normal(0.0, pow(self.hnodes, -0.5),(self.hnodes, self.inodes))) # 这里是输入层与隐藏层之间的连接
        self.who = (np.random.normal(0.0, pow(self.onodes, -0.5),(self.onodes, self.hnodes))) # 这里是隐藏层与输出层之间的连接
        self.activation_function = lambda x: spe.expit(x)           # 返回sigmoid函数

Δw j,k ​ =α∗E k ​ ∗ sigmoid (O k ​ )∗(1−sigmoid(O k ​ ))⋅O j ⊤

def query(self, inputs_list):
        inputs = np.array(inputs_list, ndmin=2).T # 输入进来的二维图像数据
        
        hidden_inputs = np.dot(self.wih, inputs)  # 隐藏层计算,说白了就是线性代数中的矩阵的点积
        hidden_outputs = self.activation_function(hidden_inputs) # 将隐藏层的输出是经过sigmoid函数处理
        final_inputs = np.dot(self.who, hidden_outputs) # 原理同hidden_inputs
        final_outputs = self.activation_function(final_inputs) # 原理同hidden_outputs 
        
        return final_outputs # 最终的输出结果就是我们预测的数据

这里我们对预测这一部分做一个简单的解释:我们之前的定义输出的节点是10个,对应的是十个数字。
而为什么会通过神经网络能达到这个亚子,我推荐这本书深度学习的数学 这本书的理论讲解非常不错!!!

四、训练模型构建

之前的部分相对而言还是比较简单的,那么接下来就是如何去构建训练模型了。

def train(self, inputs_list, targets_list):
        # 前期和识别过程是一样的,说白了我们与要先看看现在的预测结果如何,只有根据这次的预期结果才能去修改之前的权重
        inputs = np.array(inputs_list, ndmin=2).T
        
        hidden_inputs = np.dot(self.wih, inputs)
        hidden_outputs = self.activation_function(hidden_inputs)
        final_inputs = np.dot(self.who, hidden_outputs)
        final_outputs = self.activation_function(final_inputs)
        
        # 接下来将标签拿迟来
        targets = np.array(targets_list, ndmin=2).T

		# 得到我们的数据预测的误差,这个误差将是向前反馈的基础
        output_errors = targets - final_outputs
        # 这部分是根据公式得到的反向传播参数
        hidden_errors = np.dot(self.who.T, output_errors)
        
        # 根据我们的反馈参数去修改两个权重
        self.who += self.lr * np.dot((output_errors * final_outputs * ( 1.0-final_outputs)), np.transpose(hidden_outputs))
        self.wih += self.lr * np.dot((hidden_errors * hidden_outputs * (1.0-hidden_outputs)), np.transpose(inputs))

如此我们的基础神经网络构建完成了。

五、手写数字的识别

接下来神经网络是完成的,那么我们究竟该如何去将数据输入呢?
csv文件我们并不陌生【或许陌生?】,他是逗号分割文件,顾名思义,它是通过逗号分隔的,所以我们可以打开看一下:

python神经网络编程之手写数字识别

眼花缭乱!!

但是细心的我们可以发现他的第一个数字都是0~9,说明是我们的标签,那么后面的应该就是图像了,通过了解我们知道这个后面的数据是一个28*28的图像。

all_value = data_list[0].split(',') # split分割成列表
image_array = np.asfarray(all_value[1:]).reshape((28,28)) # 将数据reshape成28*28的矩阵
plt.imshow(image_array, cmap='Greys', interpolation='None') # 展示一下

通过这段代码,我们可以简单的看一下每个数字是什么:

python神经网络编程之手写数字识别

很好,知道这里就足够了,那么我们接下来就是将这些数据传入了!

我们在训练的时候,需要将他们都转化成数字列表,方便处理

data = []     # 用来保存训练过程的数据
sum_count = 0 # 统计总识别的正确的个数
for i in range(15): # 训练的轮数
    count = 0         # 单次训练识别正确的个数
    for j in range(len(data_list)):   # 对60000张图片开始训练, 没有划分数据集的过程主要是别人直接给了,我也懒得自己去做了,主要就是展示一下神经网络嘛~
        target = np.zeros(10)+0.01 # 生成初始标签集合,用来和结果对比
        line_ = data_list[j].split(',')    # 对每一行的数据处理切割
        imagearray = np.asfarray(line_)  # 将切割完成的数据转换成数字列表
        target[int(imagearray[0])] = 1.0    # 将正确答案挑出来
        n.train(imagearray[1:]/255*0.99+0.01, target) # 丢入训练,丢入的时候注意将数据转换成0.01~1.0之间的结果
    for line in answer_data: # 对10000组测试集测试
        all_values = line.split(',')
        answer = n.query((np.asfarray(all_values[1:])/255*0.99)+0.01)
        if answer[int(all_values[0])] > 0.85:  # 查看对应位置是否达到自定义的阈值?
            count += 1
    sum_count += count
    string = "训练进度 %05f\n本轮准确度 %05f\n总准确度 %05f\n\n"%(i/120,count/len(answer_data), sum_count/(len(answer_data)*(i+1)))
    data.append([i/120,count/len(answer_data), sum_count/(len(answer_data)*(i+1))])  # 将数据保存方便生成训练曲线
    print(string)
    ```
接下来我们将结果图片展示以下吧~

```python
data = np.array(data)
plt.plot(range(len(data)), data[:, 1:])

python神经网络编程之手写数字识别

六、源码

把源码整理一下贴出来

import numpy as np
import scipy.special as spe
import matplotlib.pyplot as plt

class neuralnetwork:
    # 我们需要去初始化一个神经网络
    
    def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
        
        self.inodes = inputnodes
        self.hnodes = hiddennodes
        self.onodes = outputnodes
        
        self.lr = learningrate
        
        self.wih = (np.random.normal(0.0, pow(self.hnodes, -0.5),(self.hnodes, self.inodes)))
        self.who = (np.random.normal(0.0, pow(self.onodes, -0.5),(self.onodes, self.hnodes)))
        self.activation_function = lambda x: spe.expit(x)           # 返回sigmoid函数
        
        
    def train(self, inputs_list, targets_list):
        inputs = np.array(inputs_list, ndmin=2).T
        
        hidden_inputs = np.dot(self.wih, inputs)
        hidden_outputs = self.activation_function(hidden_inputs)
        final_inputs = np.dot(self.who, hidden_outputs)
        final_outputs = self.activation_function(final_inputs)
        
        targets = np.array(targets_list, ndmin=2).T
        output_errors = targets - final_outputs
        hidden_errors = np.dot(self.who.T, output_errors)
        
        self.who += self.lr * np.dot((output_errors * final_outputs * ( 1.0-final_outputs)), np.transpose(hidden_outputs))
        self.wih += self.lr * np.dot((hidden_errors * hidden_outputs * (1.0-hidden_outputs)), np.transpose(inputs))
        
    
    def query(self, inputs_list):
        inputs = np.array(inputs_list, ndmin=2).T
        
        hidden_inputs = np.dot(self.wih, inputs)
        hidden_outputs = self.activation_function(hidden_inputs)
        final_inputs = np.dot(self.who, hidden_outputs)
        final_outputs = self.activation_function(final_inputs)
        
        return final_outputs
    
        
input_nodes = 784
hidden_nodes = 88
output_nodes = 10

learn_rate = 0.05

n = neuralnetwork(input_nodes, hidden_nodes, output_nodes, learn_rate)

data_file = open("E:\sklearn_data\神经网络数字识别\mnist_train.csv", 'r')
data_list = data_file.readlines()
data_file.close()
file2 = open("E:\sklearn_data\神经网络数字识别\mnist_test.csv")
answer_data = file2.readlines()
file2.close()

data = []

sum_count = 0
for i in range(15):
    count = 0
    for j in range(len(data_list)):
        target = np.zeros(10)+0.01
        line_ = data_list[j].split(',')
        imagearray = np.asfarray(line_)
        target[int(imagearray[0])] = 1.0
        n.train(imagearray[1:]/255*0.99+0.01, target)
    for line in answer_data:
        all_values = line.split(',')
        answer = n.query((np.asfarray(all_values[1:])/255*0.99)+0.01)
        if answer[int(all_values[0])] > 0.85:
            count += 1
    sum_count += count
    string = "训练进度 %05f\n本轮准确度 %05f\n总准确度 %05f\n\n"%(i/120,count/len(answer_data), sum_count/(len(answer_data)*(i+1)))
    data.append([i/120,count/len(answer_data), sum_count/(len(answer_data)*(i+1))])
    print(string)


data = np.array(data)

plt.plot(range(len(data)), data[:, 1:])

可以说是相对简单的一个程序,但却是包含着神经网络最基础的思想!值得好好康康~

七、思考

如何识别其他手写字体等?

我的想法:通过图像处理,将像素规定到相近大小【尺度放缩】

图像大小运行速度问题

我的想法:如何快速的矩阵运算,通过C语言是否可以加速?相较于darknet这个神经网络仅有三层,运算速度并不是十分理想。当然cuda编程对于GPU加速肯定是最好的选择之一。

到此这篇关于python神经网络编程之手写数字识别的文章就介绍到这了,更多相关python手写数字识别内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python中print的不换行即时输出的快速解决方法
Jul 20 Python
Python学生信息管理系统修改版
Mar 13 Python
TensorFlow实现随机训练和批量训练的方法
Apr 28 Python
利用ctypes获取numpy数组的指针方法
Feb 12 Python
Python使用reportlab模块生成PDF格式的文档
Mar 11 Python
详解pandas.DataFrame中删除包涵特定字符串所在的行
Apr 04 Python
详解用Python实现自动化监控远程服务器
May 18 Python
我就是这样学习Python中的列表
Jun 02 Python
Numpy中对向量、矩阵的使用详解
Oct 29 Python
使用Python测试Ping主机IP和某端口是否开放的实例
Dec 17 Python
python实现简单井字棋小游戏
Mar 05 Python
用 Python 定义 Schema 并生成 Parquet 文件详情
Sep 25 Python
利用Selenium添加cookie实现自动登录的示例代码(fofa)
Python基础之教你怎么在M1系统上使用pandas
python文件目录操作之os模块
May 08 #Python
Python进阶学习之带你探寻Python类的鼻祖-元类
May 08 #Python
python实战之用emoji表情生成文字
May 08 #Python
python实现过滤敏感词
Django中的JWT身份验证的实现
May 07 #Python
You might like
ThinkPHP实现二级循环读取的方法
2014/11/03 PHP
javascript之函数直接量(function(){})()
2007/06/29 Javascript
jquery(live)中File input的change方法只起一次作用的解决办法
2011/10/21 Javascript
ASP.NET jQuery 实例8 (动态添加内容到DropDownList)
2012/02/03 Javascript
九种js弹出对话框的方法总结
2013/03/12 Javascript
cookie的复制与使用记住用户名实现代码
2013/11/04 Javascript
jquery.map()方法的使用详解
2015/07/09 Javascript
JS设置cookie、读取cookie
2016/02/24 Javascript
javaScript中的原型解析【推荐】
2016/05/05 Javascript
js验证框架之RealyEasy验证详解
2016/06/08 Javascript
javascript中数组(Array)对象和字符串(String)对象的常用方法总结
2016/12/15 Javascript
jQuery+ajax实现修改密码验证功能实例详解
2017/07/06 jQuery
JS实现的简单分页功能示例
2018/08/23 Javascript
angularJs中$scope数据序列化的实例
2018/09/30 Javascript
使用webpack构建应用的方法步骤
2019/03/04 Javascript
vue学习笔记五:在vue项目里面使用引入公共方法详解
2019/04/04 Javascript
基于vue与element实现创建试卷相关功能(实例代码)
2020/12/07 Vue.js
在Python中使用matplotlib模块绘制数据图的示例
2015/05/04 Python
Python功能键的读取方法
2015/05/28 Python
分析python切片原理和方法
2017/12/19 Python
Python实现定制自动化业务流量报表周报功能【XlsxWriter模块】
2019/03/11 Python
python调用动态链接库的基本过程详解
2019/06/19 Python
python tkinter实现屏保程序
2019/07/30 Python
python range实例用法分享
2020/02/06 Python
python将unicode和str互相转化的实现
2020/05/11 Python
python 如何读、写、解析CSV文件
2021/03/03 Python
美国成衣女装品牌:CHICO’S
2016/09/19 全球购物
荷兰在线体育用品商店:Avantisport.nl
2018/07/04 全球购物
国际奢侈品品牌童装购物网站:Designer Childrenswear
2019/05/08 全球购物
高中毕业自我鉴定
2013/12/13 职场文书
大学生创业计划书的格式要求
2013/12/29 职场文书
商场中秋节活动方案
2014/02/07 职场文书
住宅使用说明书
2014/05/09 职场文书
县政府领导班子四风问题对照检查材料思想汇报
2014/09/26 职场文书
领导个人查摆剖析材料
2014/10/29 职场文书
上级领导检查欢迎词
2015/09/30 职场文书