pytorch之inception_v3的实现案例


Posted in Python onJanuary 06, 2020

如下所示:

from __future__ import print_function 
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import argparse
print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)


# Top level data directory. Here we assume the format of the directory conforms 
#  to the ImageFolder structure

数据集路径,路径下的数据集分为训练集和测试集,也就是train 以及val,train下分为两类数据1,2,val集同理

data_dir = "/home/dell/Desktop/data/切割图像"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "inception" 
# Number of classes in the dataset
num_classes = 2#两类数据1,2

# Batch size for training (change depending on how much memory you have)
batch_size = 32#batchsize尽量选取合适,否则训练时会内存溢出

# Number of epochs to train for 
num_epochs = 1000

# Flag for feature extracting. When False, we finetune the whole model, 
#  when True we only update the reshaped layer params
feature_extract = True

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch inception')
parser.add_argument('--outf', default='/home/dell/Desktop/dj/inception/', help='folder to output images and model checkpoints') #输出结果保存路径
parser.add_argument('--net', default='/home/dell/Desktop/dj/inception/inception.pth', help="path to net (to continue training)") #恢复训练时的模型路径
args = parser.parse_args()

训练函数

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):

  since = time.time()

  val_acc_history = []
  
  best_model_wts = copy.deepcopy(model.state_dict())
  best_acc = 0.0
  print("Start Training, InceptionV3!") 
  with open("acc.txt", "w") as f1:
    with open("log.txt", "w")as f2:
      for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch+1, num_epochs))
        print('*' * 10)
        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
          if phase == 'train':
            model.train() # Set model to training mode
          else:
            model.eval()  # Set model to evaluate mode
    
          running_loss = 0.0
          running_corrects = 0
    
          # Iterate over data.
          for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)
    
            # zero the parameter gradients
            optimizer.zero_grad()
    
            # forward
            # track history if only in train
            with torch.set_grad_enabled(phase == 'train'):
              
              if is_inception and phase == 'train':
                # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
                outputs, aux_outputs = model(inputs)
                loss1 = criterion(outputs, labels)
                loss2 = criterion(aux_outputs, labels)
                loss = loss1 + 0.4*loss2
              else:
                outputs = model(inputs)
                loss = criterion(outputs, labels)
    
              _, preds = torch.max(outputs, 1)
    
              # backward + optimize only if in training phase
              if phase == 'train':
                loss.backward()
                optimizer.step()
    
            # statistics
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)
          epoch_loss = running_loss / len(dataloaders[phase].dataset)
          epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
    
          print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
          f2.write('\n')
          f2.flush()           
          # deep copy the model
          if phase == 'val':
            if (epoch+1)%50==0:
              #print('Saving model......')
              torch.save(model.state_dict(), '%s/inception_%03d.pth' % (args.outf, epoch + 1))
            f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, epoch_acc))
            f1.write('\n')
            f1.flush()
          if phase == 'val' and epoch_acc > best_acc:
            f3 = open("best_acc.txt", "w")
            f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,epoch_acc))
            f3.close()
            best_acc = epoch_acc
            best_model_wts = copy.deepcopy(model.state_dict())
          if phase == 'val':
            val_acc_history.append(epoch_acc)

  time_elapsed = time.time() - since
  print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
  print('Best val Acc: {:4f}'.format(best_acc))
  # load best model weights
  model.load_state_dict(best_model_wts)
  return model, val_acc_history

 #是否更新参数
def set_parameter_requires_grad(model, feature_extracting):
  if feature_extracting:
    for param in model.parameters():
      param.requires_grad = False



def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
  # Initialize these variables which will be set in this if statement. Each of these
  #  variables is model specific.
  model_ft = None
  input_size = 0

  if model_name == "resnet":
    """ Resnet18
    """
    model_ft = models.resnet18(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, num_classes)
    input_size = 224

  elif model_name == "alexnet":
    """ Alexnet
    """
    model_ft = models.alexnet(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "vgg":
    """ VGG11_bn
    """
    model_ft = models.vgg11_bn(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier[6].in_features
    model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
    input_size = 224

  elif model_name == "squeezenet":
    """ Squeezenet
    """
    model_ft = models.squeezenet1_0(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
    model_ft.num_classes = num_classes
    input_size = 224

  elif model_name == "densenet":
    """ Densenet
    """
    model_ft = models.densenet121(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.classifier.in_features
    model_ft.classifier = nn.Linear(num_ftrs, num_classes) 
    input_size = 224

  elif model_name == "inception":
    """ Inception v3 
    Be careful, expects (299,299) sized images and has auxiliary output
    """
    model_ft = models.inception_v3(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    # Handle the auxilary net
    num_ftrs = model_ft.AuxLogits.fc.in_features
    model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
    # Handle the primary net
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs,num_classes)
    input_size = 299

  else:
    print("Invalid model name, exiting...")
    exit()
  
  return model_ft, input_size

# Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)

# Print the model we just instantiated
#print(model_ft) 


#准备数据
data_transforms = {
  'train': transforms.Compose([
    transforms.RandomResizedCrop(input_size),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
  'val': transforms.Compose([
    transforms.Resize(input_size),
    transforms.CenterCrop(input_size),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ]),
}

print("Initializing Datasets and Dataloaders...")


# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=0) for x in ['train', 'val']}

# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
'''
是否加载之前训练过的模型
we='/home/dell/Desktop/dj/inception_050.pth'
model_ft.load_state_dict(torch.load(we))
'''
# Send the model to GPU
model_ft = model_ft.to(device)

params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
  params_to_update = []
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      params_to_update.append(param)
      print("\t",name)
else:
  for name,param in model_ft.named_parameters():
    if param.requires_grad == True:
      print("\t",name)

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
#exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)

# Setup the loss fxn
criterion = nn.CrossEntropyLoss()

# Train and evaluate
model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))

'''
#随机初始化时的训练程序
# Initialize the non-pretrained version of the model used for this run
scratch_model,_ = initialize_model(model_name, num_classes, feature_extract=False, use_pretrained=False)
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(), lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model, dataloaders_dict, scratch_criterion, scratch_optimizer, num_epochs=num_epochs, is_inception=(model_name=="inception"))

# Plot the training curves of validation accuracy vs. number 
# of training epochs for the transfer learning method and
# the model trained from scratch
ohist = []
shist = []

ohist = [h.cpu().numpy() for h in hist]
shist = [h.cpu().numpy() for h in scratch_hist]

plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),shist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.show()
'''

以上这篇pytorch之inception_v3的实现案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 布尔操作实现代码
Mar 23 Python
python万年历实现代码 含运行结果
May 20 Python
pytorch + visdom 处理简单分类问题的示例
Jun 04 Python
pandas的唯一值、值计数以及成员资格的示例
Jul 25 Python
Django如何实现上传图片功能
Aug 16 Python
详解Python利用random生成一个列表内的随机数
Aug 21 Python
python调用matplotlib模块绘制柱状图
Oct 18 Python
用pytorch的nn.Module构造简单全链接层实例
Jan 14 Python
python修改linux中文件(文件夹)的权限属性操作
Mar 05 Python
解析Python 偏函数用法全方位实现
Jun 26 Python
Python生成pdf目录书签的实例方法
Oct 29 Python
python文件名批量重命名脚本实例代码
Apr 22 Python
pytorch之添加BN的实现
Jan 06 #Python
PyTorch学习:动态图和静态图的例子
Jan 06 #Python
pytorch动态网络以及权重共享实例
Jan 06 #Python
selenium中get_cookies()和add_cookie()的用法详解
Jan 06 #Python
pytorch中的自定义反向传播,求导实例
Jan 06 #Python
PyTorch中 tensor.detach() 和 tensor.data 的区别详解
Jan 06 #Python
6行Python代码实现进度条效果(Progress、tqdm、alive-progress​​​​​​​和PySimpleGUI库)
Jan 06 #Python
You might like
php预定义常量
2006/12/25 PHP
PHP 彩色文字实现代码
2009/06/29 PHP
PHP 进程锁定问题分析研究
2009/11/24 PHP
php实现的xml操作类
2016/01/15 PHP
Laravel5.4框架使用socialite实现github登录的方法
2019/03/20 PHP
Nginx+php配置文件及原理解析
2020/12/09 PHP
jquery 图片截取工具jquery.imagecropper.js
2010/04/09 Javascript
基于Jquery的标签智能验证实现代码
2010/12/27 Javascript
javascript高级程序设计第二版第十二章事件要点总结(常用的跨浏览器检测方法)
2012/08/22 Javascript
JQuery select控件的相关操作实现代码
2012/09/14 Javascript
jquery判断RadioButtonList和RadioButton中是否有选中项示例
2013/09/29 Javascript
JavaScript中的常见问题解决方法(乱码,IE缓存,代理)
2013/11/28 Javascript
基于JavaScript实现表单密码的隐藏和显示出来
2016/03/02 Javascript
js实现放大镜特效
2017/05/18 Javascript
利用C/C++编写node.js原生模块的方法教程
2017/07/07 Javascript
React-Native中禁用Navigator手势返回的示例代码
2017/09/09 Javascript
JS兼容所有浏览器的DOMContentLoaded事件
2018/01/12 Javascript
layui实现checkbox的目录树tree的例子
2019/09/12 Javascript
[11:27]《一刀刀一天》之DOTA全时刻20:TI4总奖金突破920W TS赛事分析
2014/06/18 DOTA
python实现数通设备tftp备份配置文件示例
2014/04/02 Python
Python实现拷贝多个文件到同一目录的方法
2016/09/19 Python
python append、extend与insert的区别
2016/10/13 Python
详解【python】str与json类型转换
2019/04/29 Python
Python处理时间日期坐标轴过程详解
2019/06/25 Python
Django之富文本(获取内容,设置内容方式)
2020/05/21 Python
python 日志模块 日志等级设置失效的解决方案
2020/05/26 Python
python相对企业语言优势在哪
2020/06/12 Python
CSS3实现点击放大的动画实例代码
2017/02/27 HTML / CSS
Chantelle仙黛尔内衣美国官网:法国第一品牌内衣
2018/07/26 全球购物
您熟悉ORM(Object-Relation Mapping)吗?请谈谈您所理解的ORM
2016/02/08 面试题
大学校庆策划书
2014/01/31 职场文书
名企HR怎样看待求职信
2014/02/23 职场文书
关于感恩的素材句子(38句)
2019/11/11 职场文书
Python自动化爬取天眼查数据的实现
2021/06/15 Python
《极主夫道》真人电影正式预告 定档6月3日上映
2022/04/05 日漫
python多次执行绘制条形图
2022/04/20 Python