详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)


Posted in Python onJuly 01, 2019

前言

最近参加了大创项目,题目涉及到计算机视觉,学姐发了个修正图像的博客链接,于是打算用这个题目入门OpenCV。

分析问题

照片中的PPT区域总是沿着x,y,z三个轴都有倾斜(如下图),要想把照片翻转到平行位置,需要进行透视变换,而透视变换需要同一像素点变换前后的坐标。由此可以想到,提取矩形区域四个角的坐标作为变换前的坐标,变换后的坐标可以设为照片的四个角落,经过投影变换,矩形区域将会翻转并充满图像。

详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)

因此我们要解决的问题变为:提取矩形的四个角落、进行透视变换。

提取矩形角落坐标

矩形的检测主要是提取边缘,PPT显示部分的亮度通常高于周围环境,我们可以将图片阈值化,将PPT部分与周围环境明显的分别开来,这对后边的边缘检测非常有帮助。

检测矩形并提取坐标需要对图像进行预处理、边缘检测、提取轮廓、检测凸包、角点检测。

预处理

由于手机拍摄的照片像素可能会很高,为了加快处理速度,我们首先缩小图片,这里缩小了4倍。

pyrDown(srcPic,   shrinkedPic);    //减小尺寸 加快运算速度
pyrDown(shrinkedPic, shrinkedPic);

转化为灰度图

cvtColor(shrinkedPic, greyPic, COLOR_BGR2GRAY); //转化为灰度图

中值滤波

medianBlur(greyPic, greyPic, 7); //中值滤波

转为二值图片

threshold(greyPic, binPic, 80, 255, THRESH_BINARY); //阈值化为二值图片

此时图片已经变成了这个样子:

详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)

可见PPT部分已经与环境分离开来。

边缘检测与轮廓处理

进行Canny边缘检测

Canny(binPic, cannyPic, cannyThr, cannyThr*FACTOR); //Canny边缘检测

这里 cannyThr = 200, FACTOR = 2.5
可能由于边缘特征过于明显,系数在100-600范围(具体数字可能有出入,反正范围非常大)内产生的效果几乎相同。

提取轮廓

vector<vector<Point>> contours;  //储存轮廓
vector<Vec4i> hierarchy;
  
findContours(cannyPic, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);  //获取轮廓

findContour函数原型如下:

CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours,
               OutputArray hierarchy, int mode,
              int method, Point offset = Point());

检测到的轮廓都存在contours里,每个轮廓保存为一个vector<Point>
hierarchy为可选的输出向量,包括图像的拓扑信息,这里可以选择不用。

我们可以反复调用drawContours函数将轮廓画出

linePic = Mat::zeros(cannyPic.rows, cannyPic.cols, CV_8UC3);
for (int index = 0; index < contours.size(); index++){    
    drawContours(linePic, contours, index, Scalar(rand() & 255, rand() & 255, rand() & 255), 1, 8/*, hierarchy*/);
}

drawContours函数原型:

CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
              int contourIdx, const Scalar& color,
              int thickness = 1, int lineType = LINE_8,
              InputArray hierarchy = noArray(),
              int maxLevel = INT_MAX, Point offset = Point() );

作用是将contours中的第contourIdx条轮廓用color颜色绘制到image中,thickness为线条的粗细, contourIdx为负数时画出所有轮廓

这里要注意的是在绘制轮廓前要提前为输出矩阵分配空间,否则会出现以下错误

OpenCV(3.4.1) Error: Assertion failed (size.width>0 && size.height>0) in cv::imshow, file C:\build\master_winpack-build-win64-vc15\opencv\modules\highgui\src\window.cpp, line 356

详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)

提取面积最大的轮廓并用多边形将轮廓包围

从上面的轮廓图中看出,PPT的矩形已经成为了图片的主要部分,接下来的思路是提取面积最大的轮廓,得到矩形轮廓。

vector<vector<Point>> polyContours(contours.size());
int maxArea = 0;
for (int index = 0; index < contours.size(); index++){    
    if (contourArea(contours[index]) > contourArea(contours[maxArea]))
      maxArea = index;    
    approxPolyDP(contours[index], polyContours[index], 10, true);
  }

contourArea用来计算轮廓的面积
approxPolyDP的作用是用多边形包围轮廓,可以得到严格的矩形,有助于找到角点

画出矩形,同样注意要提前为Mat分配空间

Mat polyPic = Mat::zeros(shrinkedPic.size(), CV_8UC3);
drawContours(polyPic, polyContours, maxArea, Scalar(0,0,255/*rand() & 255, rand() & 255, rand() & 255*/), 2);

详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)

如图,接下来我们只需提取到四个角的坐标

寻找凸包

vector<int> hull;
convexHull(polyContours[maxArea], hull, false);  //检测该轮廓的凸包

convexHull函数原型

CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
              bool clockwise = false, bool returnPoints = true );

hull为输出参数, clockwise决定凸包顺逆时针方向, returnPoints为真时返回凸包的各个点,否则返回各点的指数
hull可以为vector<int>类型,此时返回的是凸包点在原图中的下标索引

我们可以把点和多边形添加到原图中查看效果

for (int i = 0; i < hull.size(); ++i){
    circle(polyPic, polyContours[maxArea][i], 10, Scalar(rand() & 255, rand() & 255, rand() & 255), 3);
  }
addWeighted(polyPic, 0.5, shrinkedPic, 0.5, 0, shrinkedPic);

详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)

现在我们已经比较准确地获得了需要的点,下面就要利用这些点进行坐标映射。

投影变换

投影变换需要像素在两个坐标系中的坐标一一对应,虽然我们已经有了四个坐标,但还没有区分它们的位置。

新建两个数组

Point2f srcPoints[4], dstPoints[4];
dstPoints[0] = Point2f(0, 0);
dstPoints[1] = Point2f(srcPic.cols, 0);
dstPoints[2] = Point2f(srcPic.cols, srcPic.rows);
dstPoints[3] = Point2f(0, srcPic.rows);

dstPoints储存的是变换后各点的坐标,依次为左上,右上,右下, 左下

srcPoints储存的是上面得到的四个角的坐标

下面对得到的四个点进行处理

for (int i = 0; i < 4; i++){
  polyContours[maxArea][i] = Point2f(polyContours[maxArea][i].x * 4, polyContours[maxArea][i].y * 4); //恢复坐标到原图
}
    //对四个点进行排序 分出左上 右上 右下 左下
bool sorted = false;
int n = 4;
while (!sorted){
  for (int i = 1; i < n; i++){
  sorted = true;
    if (polyContours[maxArea][i-1].x > polyContours[maxArea][i].x){
      swap(polyContours[maxArea][i-1], polyContours[maxArea][i]);
      sorted = false;
    }
  }
  n--;
}
if (polyContours[maxArea][0].y < polyContours[maxArea][1].y){
  srcPoints[0] = polyContours[maxArea][0];
  srcPoints[3] = polyContours[maxArea][1];
}
else{
  srcPoints[0] = polyContours[maxArea][1];
  srcPoints[3] = polyContours[maxArea][0];
}

if (polyContours[maxArea][9].y < polyContours[maxArea][10].y){
  srcPoints[1] = polyContours[maxArea][2];
  srcPoints[2] = polyContours[maxArea][3];
}
else{
  srcPoints[1] = polyContours[maxArea][3];
  srcPoints[2] = polyContours[maxArea][2];
}

即先对四个点的x坐标进行冒泡排序分出左右,再根据两对坐标的y值比较分出上下
(笔者试图通过凸包的顺逆时针顺序以及凸包点与原点的距离来活得位置信息,却均以失败告终)

坐标变换需要矩阵运算,OpenCV中给我们提供了getPerspectiveTransform函数用来得到矩阵

Mat transMat = getPerspectiveTransform(srcPoints, dstPoints); //得到变换矩阵

接下来进行坐标变换,网上查到的步骤都是通过perspectiveTransform函数变换,但尝试多次都出现了报错,Google了好长时间才知道原来这个函数的传入输入输出参数均为点集,我们这个场景用起来比较麻烦。

warpPerspective函数可以直接传入输入Mat类型数据,比较方便

warpPerspective(srcPic, outPic, transMat, srcPic.size()); //进行坐标变换

参数分别为输入输出图像、变换矩阵、大小。

坐标变换后就得到了我们要的最终图像。

详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)

总结

我们利用了屏幕亮度较高的特点,通过二值化突出轮廓提取坐标,进行透视变换。

但局限性在于,如果矩形的亮度与背景相差不大,就很难用这种方法检测到轮廓。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python基于mysql实现的简单队列以及跨进程锁实例详解
Jul 07 Python
Django框架中render_to_response()函数的使用方法
Jul 16 Python
python如何在终端里面显示一张图片
Aug 17 Python
Python使用django框架实现多人在线匿名聊天的小程序
Nov 29 Python
如何在Django项目中引入静态文件
Jul 26 Python
Python Web框架之Django框架Model基础详解
Aug 16 Python
Python使用百度api做人脸对比的方法
Aug 28 Python
Python用input输入列表的实例代码
Feb 07 Python
关于TensorFlow新旧版本函数接口变化详解
Feb 10 Python
Python基础之列表常见操作经典实例详解
Feb 26 Python
Python字符串对齐方法使用(ljust()、rjust()和center())
Apr 26 Python
python获取字符串中的email
Mar 31 Python
用python打印1~20的整数实例讲解
Jul 01 #Python
python sklearn库实现简单逻辑回归的实例代码
Jul 01 #Python
python实现列表的排序方法分享
Jul 01 #Python
Apache,wsgi,django 程序部署配置方法详解
Jul 01 #Python
Python中字符串List按照长度排序
Jul 01 #Python
python opencv minAreaRect 生成最小外接矩形的方法
Jul 01 #Python
VPS CENTOS 上配置python,mysql,nginx,uwsgi,django的方法详解
Jul 01 #Python
You might like
全国FM电台频率大全 - 28 甘肃省
2020/03/11 无线电
用PHP获取Google AJAX Search API 数据的代码
2010/03/12 PHP
php比较两个绝对时间的大小
2014/01/31 PHP
php计算整个mysql数据库大小的方法
2015/06/19 PHP
Zend Framework框架教程之Zend_Db_Table_Rowset用法实例分析
2016/03/21 PHP
Laravel最佳分割路由文件(routes.php)的方式
2016/08/04 PHP
PHP5.6读写excel表格文件操作示例
2019/02/26 PHP
让JavaScript 轻松支持函数重载 (Part 1 - 设计)
2009/08/04 Javascript
js bind 函数 使用闭包保存执行上下文
2011/12/26 Javascript
9款2014最热门jQuery实用特效推荐
2014/12/07 Javascript
jquery.validate使用时遇到的问题
2015/05/25 Javascript
jQuery实现鼠标选中文字后弹出提示窗口效果【附demo源码】
2016/09/05 Javascript
原生js封装的一些jquery方法(详解)
2016/09/20 Javascript
vue2实现移动端上传、预览、压缩图片解决拍照旋转问题
2017/04/13 Javascript
JS身份证信息验证正则表达式
2017/06/12 Javascript
浅谈Node Inspector 代理实现
2017/10/19 Javascript
js实现以最简单的方式将数组元素添加到对象中的方法
2017/12/20 Javascript
Vue filter格式化时间戳时间成标准日期格式的方法
2018/09/16 Javascript
jQuery创建折叠式菜单
2019/06/15 jQuery
vue的keep-alive用法技巧
2019/08/15 Javascript
[01:09:40]Newbee vs Pain 2018国际邀请赛小组赛BO2 第一场 8.16
2018/08/17 DOTA
[45:59]完美世界DOTA2联赛PWL S2 FTD vs GXR 第二场 11.22
2020/11/24 DOTA
Python实现大文件排序的方法
2015/07/10 Python
Python实现的单向循环链表功能示例
2017/11/10 Python
Python数据结构之栈、队列的实现代码分享
2017/12/04 Python
Python中asyncio与aiohttp入门教程
2018/10/16 Python
Python编程深度学习计算库之numpy
2018/12/28 Python
Python3 使用cookiejar管理cookie的方法
2018/12/28 Python
通过python爬虫赚钱的方法
2019/01/29 Python
django admin后管定制-显示字段的实例
2020/03/11 Python
Python面向对象特殊属性及方法解析
2020/09/16 Python
一款纯css3实现的响应式导航
2014/10/31 HTML / CSS
医院护士专业个人的求职信
2013/12/09 职场文书
签约仪式致辞
2015/07/30 职场文书
导游词之千岛湖
2019/09/23 职场文书
Docker下安装Oracle19c
2022/04/13 Servers