pymongo中聚合查询的使用方法


Posted in Python onMarch 22, 2019

前言

在使用mongo数据库时,简单的查询基本上可以满足大多数的业务场景,但是试想一下,如果要统计某一荐在指定的数据中出现了多少次该怎么查询呢?笨的方法是使用find 将数据查询出来,再使用count() 方法进行数据统计,这个场景还好,但是如果要求其中某个字段的和呢?是不是就非得遍历出相应的数据然后再进行求和运算呢?

在mysql中我们经常会用到count、group by 等查询,在mongodb中我们也可以使用聚合查询。

假设有这样的一组数据

pymongo中聚合查询的使用方法
价格

里面记录了每种水果的价格,现在我要统计一下,各种水果在这张表中出现的次数,如果不用聚合查询的话,思路应该是这样,先把表中所有的数据都取出来,然后初始化一个字典,然后再遍历每一行的数据,获取它的fName ,然后再更新字典中的计数,这种方法的时间复杂度是O(N)的,如果数据量很大的话不是很好,下面来看一下使用聚合是怎么查询的。

聚合查询使用的是aggregate函数,它的参数是 pipeline 管道,管道的概念是用于将当前命令的输出结果作为下一个命令的参数,管道是有顺序的,比如通过第一个管道操作以后没有符合的数据那么之后的管道操作也就不会有输入,所以一定得要注意管道操作的顺序。由于对于上述问题,我们要的是所的数据统计,所以这里就不需要$match了

from pymongo import MongoClient

client = MongoClient(host=['%s:%s'%(mongoDBhost,mongoDBport)])
G_mongo = client[mongoDBname]['FruitPrice']

pipeline = [
 {'$group': {'_id': "$fName", 'count': {'$sum': 1}}},
 ]
for i in G_mongo['test'].aggregate(pipeline):
 print i

数据大家可以自已构造,这里主要是看aggregate的用法。
得到的结果是

{u'count': 8, u'_id': u'banana'}
{u'count': 9, u'_id': u'pear'}
{u'count': 14, u'_id': u'apple'}

可以看到,一步操作就可以得到相应的统计了。

如果想要获取价格在50以上的各种统计呢?

这时有pipeline应该再$group 之前加上$match 操作

pipeline = [
 {'$match':{'price':{'$gte':50}}},
 {'$group': {'_id': "$fName", 'count': {'$sum': 1}}},
 ]

一定要注意顺序

$match里的条件其实就和使用find函数里是一样的。

下面重点来说说$group操作,group意为分组,指数据根据哪个字段进行分组,上面使用的{'$group': {'_id': "$fName", 'count': {'$sum': 1},_id为所要分的组,这里是以fName字段分的,后面的'count': {'$sum': 1},这里的$sum就是求和的意思,后面的值是1,也就是说每出现一次就加1,这样就能达到计数的目的了,如果要计算价格 price 的和,那么这里就应该写成这样

{'$group': {'_id': "$fName", 'count': {'$sum': '$price'}}}

注意这里的字段要有$ 的,如果我想要求价格的平均值呢?也就是先要求出价格的总数,再除以商品的个数,但是这里有一个$avg 操作

pipeline = [
 {'$match':{'price':{'$gte':50}}},
 {'$group': {'_id': "$fName", 'avg': {'$avg': '$price'}}},
 ]

得到的结果

{u'_id': u'banana', u'avg': 66.200000000000003}
{u'_id': u'pear', u'avg': 77.0}
{u'_id': u'apple', u'avg': 74.0}

类似于$ave的操作还有很多,比较常用的是$min(求最小值),$max(求最大值)

pipeline = [
 {'$match':{'price':{'$gte':50}}},
 {'$group': {'_id': "$fName",
  'count':{'$sum':1},
  'priceAll':{'$sum':'$price'},
  'avg': {'$avg': '$price'},
  'min': {'$min':'$price'},
  'max': {'$max':'$price'}
  }
 },
 ]
for i in G_mongo['test'].aggregate(pipeline):
 print i

所有支持的操作可以参考官方文档:group 支持的操作

以哪个字段进行分组时必须使用_id。

接下来看一下多键分组。

以上在使用group 进行分组查询的时候,用到的_id都是单一字段,比如我的数据库中有如下数据

pymongo中聚合查询的使用方法
带用户的数据

带有一个user 字段了,那如果我要根据user和fName进行分组该如何操作呢?
这里可以传一个字典进去

pipeline = [
 {'$match':{'price':{'$gte':50}}},
 {'$group': {'_id': {'fName':'$fName','user':'$user'},
  'count':{'$sum':1},
  'priceAll':{'$sum':'$price'},
  'avg': {'$avg': '$price'},
  'min': {'$min':'$price'},
  'max': {'$max':'$price'}
  }
 },
 ]
for i in G_mongo['test2'].aggregate(pipeline):
 print i

得到的结果如下:

{u'count': 1, u'avg': 93.0, u'min': 93, u'max': 93, u'_id': {u'user': u'fanjieying', u'fName': u'pear'}, u'priceAll': 93}
{u'count': 2, u'avg': 88.0, u'min': 87, u'max': 89, u'_id': {u'user': u'yangyanxing', u'fName': u'banana'}, u'priceAll': 176}
{u'count': 2, u'avg': 70.0, u'min': 69, u'max': 71, u'_id': {u'user': u'yangyanxing', u'fName': u'pear'}, u'priceAll': 140}
{u'count': 2, u'avg': 65.5, u'min': 58, u'max': 73, u'_id': {u'user': u'fanjieying', u'fName': u'banana'}, u'priceAll': 131}
{u'count': 3, u'avg': 92.333333333333329, u'min': 86, u'max': 97, u'_id': {u'user': u'fantuan', u'fName': u'banana'}, u'priceAll': 277}
{u'count': 2, u'avg': 78.5, u'min': 73, u'max': 84, u'_id': {u'user': u'yangyanxing', u'fName': u'apple'}, u'priceAll': 157}
{u'count': 3, u'avg': 56.666666666666664, u'min': 51, u'max': 60, u'_id': {u'user': u'fantuan', u'fName': u'pear'}, u'priceAll': 170}
{u'count': 2, u'avg': 81.5, u'min': 73, u'max': 90, u'_id': {u'user': u'fanjieying', u'fName': u'apple'}, u'priceAll': 163}
{u'count': 2, u'avg': 69.5, u'min': 53, u'max': 86, u'_id': {u'user': u'fantuan', u'fName': u'apple'}, u'priceAll': 139}

这里的结果显示出每个用户买了哪个商品,一共花了多少钱,最大最小平均值等都可以一次性的展示了,如果要是使用for循环自已遍历的话这种时间复杂度相当高。

这里只是简单的说了下$group和$match 的用法,聚合查询支持很多种操作(称为stages),可以通官方文档进行查看
pymongo 中pipeline中的stages

参考文章

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对三水点靠木的支持。

Python 相关文章推荐
动态创建类实例代码
Oct 07 Python
跟老齐学Python之一个免费的实验室
Sep 14 Python
python处理PHP数组文本文件实例
Sep 18 Python
使用Python的Scrapy框架十分钟爬取美女图
Dec 26 Python
Python实现注册登录系统
Aug 08 Python
Python爬取当当、京东、亚马逊图书信息代码实例
Dec 09 Python
python图像和办公文档处理总结
May 28 Python
详解Python图像处理库Pillow常用使用方法
Sep 02 Python
selenium与xpath之获取指定位置的元素的实现
Jan 26 Python
教你怎么用Python操作MySql数据库
May 31 Python
Python OpenCV实现传统图片格式与base64转换
Jun 13 Python
Selenium浏览器自动化如何上传文件
Apr 06 Python
OpenCV HSV颜色识别及HSV基本颜色分量范围
Mar 22 #Python
基于OpenCV python3实现证件照换背景的方法
Mar 22 #Python
详解Python给照片换底色(蓝底换红底)
Mar 22 #Python
详解python-图像处理(映射变换)
Mar 22 #Python
python中如何使用分步式进程计算详解
Mar 22 #Python
浅谈Python基础—判断和循环
Mar 22 #Python
浅谈python常用程序算法
Mar 22 #Python
You might like
JS 网站性能优化笔记
2011/05/24 PHP
php异常处理使用示例
2014/02/25 PHP
php的declare控制符和ticks教程(附示例)
2014/03/21 PHP
强制PHP命令行脚本单进程运行的方法
2014/04/15 PHP
php微信公众号开发之简答题
2018/10/20 PHP
解决laravel-admin 自己新建页面里 js 需要刷新一次的问题
2019/10/03 PHP
PHP Swoole异步MySQL客户端实现方法示例
2019/10/24 PHP
javascript读取xml实现javascript分页
2013/12/13 Javascript
jquery 图片缩放拖动的简单实例
2014/01/08 Javascript
jquery滚动到顶部底部代码
2015/04/20 Javascript
jQuery定义插件的方法
2015/12/18 Javascript
Webwork 实现文件上传下载代码详解
2016/02/02 Javascript
极力推荐10个短小实用的JavaScript代码段
2016/08/03 Javascript
jQuery fadeOut 异步实例代码详解
2016/08/18 Javascript
jQuery插件扩展实例【添加回调函数】
2016/11/26 Javascript
微信小程序 点击控件后选中其它反选实例详解
2017/02/21 Javascript
基于Vue实现timepicker
2017/04/25 Javascript
基于 Vue.js 之 iView UI 框架非工程化实践记录(推荐)
2017/11/21 Javascript
解决vue组件props传值对象获取不到的问题
2019/06/06 Javascript
原生js实现随机点名功能
2019/11/05 Javascript
[02:33]2018 DOTA2亚洲邀请赛回顾视频 再次拾起那些美妙的时刻
2018/04/10 DOTA
[01:18:21]EG vs TNC Supermajor小组赛B组败者组第一轮 BO3 第一场 6.2
2018/06/03 DOTA
浅析python 内置字符串处理函数的使用方法
2014/06/11 Python
Java实现的执行python脚本工具类示例【使用jython.jar】
2018/03/29 Python
对python中两种列表元素去重函数性能的比较方法
2018/06/29 Python
python 字典 按key值大小 倒序取值的实例
2018/07/06 Python
python基于C/S模式实现聊天室功能
2019/01/09 Python
Django form表单与请求的生命周期步骤详解
2020/06/07 Python
Python基于Faker假数据构造库
2020/11/30 Python
利用CSS3的border-radius绘制太极及爱心图案示例
2016/05/17 HTML / CSS
加拿大快时尚零售商:Ardene
2018/02/14 全球购物
你常见到的runtime exception
2016/09/05 面试题
如何让Java程序执行效率更高
2014/06/25 面试题
Python里面如何实现tuple和list的转换
2012/06/13 面试题
毕业生找工作自荐书
2014/06/30 职场文书
Python first-order-model实现让照片动起来
2022/06/25 Python