神经网络python源码分享


Posted in Python onDecember 15, 2017

神经网络的逻辑应该都是熟知的了,在这里想说明一下交叉验证

交叉验证方法:

神经网络python源码分享

看图大概就能理解了,大致就是先将数据集分成K份,对这K份中每一份都取不一样的比例数据进行训练和测试。得出K个误差,将这K个误差平均得到最终误差

这第一个部分是BP神经网络的建立

参数选取参照论文:基于数据挖掘技术的股价指数分析与预测研究_胡林林

import math
import random
import tushare as ts
import pandas as pd
random.seed(0)
def getData(id,start,end):
  df = ts.get_hist_data(id,start,end)
  DATA=pd.DataFrame(columns=['rate1', 'rate2','rate3','pos1','pos2','pos3','amt1','amt2','amt3','MA20','MA5','r'])
  P1 = pd.DataFrame(columns=['high','low','close','open','volume'])
  DATA2=pd.DataFrame(columns=['R'])
  DATA['MA20']=df['ma20']
  DATA['MA5']=df['ma5']
  P=df['close']
  P1['high']=df['high']
  P1['low']=df['low']
  P1['close']=df['close']
  P1['open']=df['open']
  P1['volume']=df['volume']

  DATA['rate1']=(P1['close'].shift(1)-P1['open'].shift(1))/P1['open'].shift(1)
  DATA['rate2']=(P1['close'].shift(2)-P1['open'].shift(2))/P1['open'].shift(2)
  DATA['rate3']=(P1['close'].shift(3)-P1['open'].shift(3))/P1['open'].shift(3)
  DATA['pos1']=(P1['close'].shift(1)-P1['low'].shift(1))/(P1['high'].shift(1)-P1['low'].shift(1))
  DATA['pos2']=(P1['close'].shift(2)-P1['low'].shift(2))/(P1['high'].shift(2)-P1['low'].shift(2))
  DATA['pos3']=(P1['close'].shift(3)-P1['low'].shift(3))/(P1['high'].shift(3)-P1['low'].shift(3))
  DATA['amt1']=P1['volume'].shift(1)/((P1['volume'].shift(1)+P1['volume'].shift(2)+P1['volume'].shift(3))/3)
  DATA['amt2']=P1['volume'].shift(2)/((P1['volume'].shift(2)+P1['volume'].shift(3)+P1['volume'].shift(4))/3)
  DATA['amt3']=P1['volume'].shift(3)/((P1['volume'].shift(3)+P1['volume'].shift(4)+P1['volume'].shift(5))/3)
  templist=(P-P.shift(1))/P.shift(1)
  tempDATA = []
  for indextemp in templist:
    tempDATA.append(1/(1+math.exp(-indextemp*100)))
  DATA['r'] = tempDATA
  DATA=DATA.dropna(axis=0)
  DATA2['R']=DATA['r']
  del DATA['r']
  DATA=DATA.T
  DATA2=DATA2.T
  DATAlist=DATA.to_dict("list")
  result = []
  for key in DATAlist:
    result.append(DATAlist[key])
  DATAlist2=DATA2.to_dict("list")
  result2 = []
  for key in DATAlist2:
    result2.append(DATAlist2[key])
  return result
def getDataR(id,start,end):
  df = ts.get_hist_data(id,start,end)
  DATA=pd.DataFrame(columns=['rate1', 'rate2','rate3','pos1','pos2','pos3','amt1','amt2','amt3','MA20','MA5','r'])
  P1 = pd.DataFrame(columns=['high','low','close','open','volume'])
  DATA2=pd.DataFrame(columns=['R'])
  DATA['MA20']=df['ma20'].shift(1)
  DATA['MA5']=df['ma5'].shift(1)
  P=df['close']
  P1['high']=df['high']
  P1['low']=df['low']
  P1['close']=df['close']
  P1['open']=df['open']
  P1['volume']=df['volume']

  DATA['rate1']=(P1['close'].shift(1)-P1['open'].shift(1))/P1['open'].shift(1)
  DATA['rate2']=(P1['close'].shift(2)-P1['open'].shift(2))/P1['open'].shift(2)
  DATA['rate3']=(P1['close'].shift(3)-P1['open'].shift(3))/P1['open'].shift(3)
  DATA['pos1']=(P1['close'].shift(1)-P1['low'].shift(1))/(P1['high'].shift(1)-P1['low'].shift(1))
  DATA['pos2']=(P1['close'].shift(2)-P1['low'].shift(2))/(P1['high'].shift(2)-P1['low'].shift(2))
  DATA['pos3']=(P1['close'].shift(3)-P1['low'].shift(3))/(P1['high'].shift(3)-P1['low'].shift(3))
  DATA['amt1']=P1['volume'].shift(1)/((P1['volume'].shift(1)+P1['volume'].shift(2)+P1['volume'].shift(3))/3)
  DATA['amt2']=P1['volume'].shift(2)/((P1['volume'].shift(2)+P1['volume'].shift(3)+P1['volume'].shift(4))/3)
  DATA['amt3']=P1['volume'].shift(3)/((P1['volume'].shift(3)+P1['volume'].shift(4)+P1['volume'].shift(5))/3)
  templist=(P-P.shift(1))/P.shift(1)
  tempDATA = []
  for indextemp in templist:
    tempDATA.append(1/(1+math.exp(-indextemp*100)))
  DATA['r'] = tempDATA
  DATA=DATA.dropna(axis=0)
  DATA2['R']=DATA['r']
  del DATA['r']
  DATA=DATA.T
  DATA2=DATA2.T
  DATAlist=DATA.to_dict("list")
  result = []
  for key in DATAlist:
    result.append(DATAlist[key])
  DATAlist2=DATA2.to_dict("list")
  result2 = []
  for key in DATAlist2:
    result2.append(DATAlist2[key])
  return result2
def rand(a, b):
  return (b - a) * random.random() + a
def make_matrix(m, n, fill=0.0):
  mat = []
  for i in range(m):
    mat.append([fill] * n)
  return mat
def sigmoid(x):
  return 1.0 / (1.0 + math.exp(-x))
def sigmod_derivate(x):
  return x * (1 - x)
class BPNeuralNetwork:
  def __init__(self):
    self.input_n = 0
    self.hidden_n = 0
    self.output_n = 0
    self.input_cells = []
    self.hidden_cells = []
    self.output_cells = []
    self.input_weights = []
    self.output_weights = []
    self.input_correction = []
    self.output_correction = []

  def setup(self, ni, nh, no):
    self.input_n = ni + 1
    self.hidden_n = nh
    self.output_n = no
    # init cells
    self.input_cells = [1.0] * self.input_n
    self.hidden_cells = [1.0] * self.hidden_n
    self.output_cells = [1.0] * self.output_n
    # init weights
    self.input_weights = make_matrix(self.input_n, self.hidden_n)
    self.output_weights = make_matrix(self.hidden_n, self.output_n)
    # random activate
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        self.input_weights[i][h] = rand(-0.2, 0.2)
    for h in range(self.hidden_n):
      for o in range(self.output_n):
        self.output_weights[h][o] = rand(-2.0, 2.0)
    # init correction matrix
    self.input_correction = make_matrix(self.input_n, self.hidden_n)
    self.output_correction = make_matrix(self.hidden_n, self.output_n)

  def predict(self, inputs):
    # activate input layer
    for i in range(self.input_n - 1):
      self.input_cells[i] = inputs[i]
    # activate hidden layer
    for j in range(self.hidden_n):
      total = 0.0
      for i in range(self.input_n):
        total += self.input_cells[i] * self.input_weights[i][j]
      self.hidden_cells[j] = sigmoid(total)
    # activate output layer
    for k in range(self.output_n):
      total = 0.0
      for j in range(self.hidden_n):
        total += self.hidden_cells[j] * self.output_weights[j][k]
      self.output_cells[k] = sigmoid(total)
    return self.output_cells[:]
  def back_propagate(self, case, label, learn, correct):
    # feed forward
    self.predict(case)
    # get output layer error
    output_deltas = [0.0] * self.output_n
    for o in range(self.output_n):
      error = label[o] - self.output_cells[o]
      output_deltas[o] = sigmod_derivate(self.output_cells[o]) * error
    # get hidden layer error
    hidden_deltas = [0.0] * self.hidden_n
    for h in range(self.hidden_n):
      error = 0.0
      for o in range(self.output_n):
        error += output_deltas[o] * self.output_weights[h][o]
      hidden_deltas[h] = sigmod_derivate(self.hidden_cells[h]) * error
    # update output weights
    for h in range(self.hidden_n):
      for o in range(self.output_n):
        change = output_deltas[o] * self.hidden_cells[h]
        self.output_weights[h][o] += learn * change + correct * self.output_correction[h][o]
        self.output_correction[h][o] = change
    # update input weights
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        change = hidden_deltas[h] * self.input_cells[i]
        self.input_weights[i][h] += learn * change + correct * self.input_correction[i][h]
        self.input_correction[i][h] = change
    # get global error
    error = 0.0
    for o in range(len(label)):
      error += 0.5 * (label[o] - self.output_cells[o]) ** 2
    return error
  def train(self, cases, labels, limit=10000, learn=0.05, correct=0.1):
    for i in range(limit):
      error = 0.0
      for i in range(len(cases)):
        label = labels[i]
        case = cases[i]
        error += self.back_propagate(case, label, learn, correct)
  def test(self,id):
    result=getData("000001", "2015-01-05", "2015-01-09")
    result2=getDataR("000001", "2015-01-05", "2015-01-09")
    self.setup(11, 5, 1)
    self.train(result, result2, 10000, 0.05, 0.1)
    for t in resulttest:
      print(self.predict(t))

下面是选取14-15年数据进行训练,16年数据作为测试集,调仓周期为20个交易日,大约1个月,对上证50中的股票进行预测,选取预测的涨幅前10的股票买入,对每只股票分配一样的资金,初步运行没有问题,但就是太慢了,等哪天有空了再运行

import BPnet
import tushare as ts
import pandas as pd
import math
import xlrd
import datetime as dt
import time

#
#nn =BPnet.BPNeuralNetwork()
#nn.test('000001')
#for i in ts.get_sz50s()['code']:
holdList=pd.DataFrame(columns=['time','id','value'])
share=ts.get_sz50s()['code']
time2=ts.get_k_data('000001')['date']
newtime = time2[400:640]
newcount=0
for itime in newtime:
  print(itime)
  if newcount % 20 == 0:
        sharelist = pd.DataFrame(columns=['time','id','value'])
    for ishare in share:
      backwardtime = time.strftime('%Y-%m-%d',time.localtime(time.mktime(time.strptime(itime,'%Y-%m-%d'))-432000*4))
      trainData = BPnet.getData(ishare, '2014-05-22',itime)
      trainDataR = BPnet.getDataR(ishare, '2014-05-22',itime)
      testData = BPnet.getData(ishare, backwardtime,itime)
      try:
        print(testData)
        testData = testData[-1]
        print(testData)
        nn = BPnet.BPNeuralNetwork()
        nn.setup(11, 5, 1)
        nn.train(trainData, trainDataR, 10000, 0.05, 0.1)
        value = nn.predict(testData)
        newlist= pd.DataFrame({'time':itime,"id":ishare,"value":value},index=["0"])
        sharelist = sharelist.append(newlist,ignore_index=True)
      except: 
        pass
    sharelist=sharelist.sort(columns ='value',ascending=False)
    sharelist = sharelist[:10]
    holdList=holdList.append(sharelist,ignore_index=True)
  newcount+=1
  print(holdList)

总结

以上就是本文关于神经网络python源码分享的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

Python 相关文章推荐
使用tensorflow实现AlexNet
Nov 20 Python
Python中判断输入是否为数字的实现代码
May 26 Python
python读写LMDB文件的方法
Jul 02 Python
用Python PIL实现几个简单的图片特效
Jan 18 Python
pyqt 实现为长内容添加滑轮 scrollArea
Jun 19 Python
python爬虫之快速对js内容进行破解
Jul 09 Python
python装饰器的特性原理详解
Dec 25 Python
Python用input输入列表的实例代码
Feb 07 Python
python图形开发GUI库pyqt5的详细使用方法及各控件的属性与方法
Feb 14 Python
Python如何使用PIL Image制作GIF图片
May 16 Python
python用Configobj模块读取配置文件
Sep 26 Python
手把手教你用Django执行原生SQL的方法
Feb 18 Python
神经网络理论基础及Python实现详解
Dec 15 #Python
浅谈机器学习需要的了解的十大算法
Dec 15 #Python
python实现协同过滤推荐算法完整代码示例
Dec 15 #Python
python3大文件解压和基本操作
Dec 15 #Python
Python数据结构与算法之常见的分配排序法示例【桶排序与基数排序】
Dec 15 #Python
numpy自动生成数组详解
Dec 15 #Python
Python3实现发送QQ邮件功能(附件)
Dec 23 #Python
You might like
PHP运行出现Notice : Use of undefined constant 的完美解决方案分享
2012/03/05 PHP
深入PHP autoload机制的详解
2013/06/09 PHP
PHP单态模式简单用法示例
2016/11/16 PHP
ThinkPHP实现附件上传功能
2017/04/27 PHP
php在windows环境下获得cpu内存实时使用率(推荐)
2018/02/08 PHP
Laravel框架模板加载,分配变量及简单路由功能示例
2018/06/11 PHP
JavaScript 数组循环引起的思考
2010/01/01 Javascript
jQuery lazyload 的重复加载错误以及修复方法
2010/11/19 Javascript
浅析tr的隐藏和显示问题
2014/03/05 Javascript
jquery如何把数组变为字符串传到服务端并处理
2014/04/30 Javascript
JS实现点击按钮后框架内载入不同网页的方法
2015/05/05 Javascript
JS如何判断json是否为空
2016/07/06 Javascript
移动端点击态处理的三种实现方式
2017/01/12 Javascript
bootstrap是什么_动力节点Java学院整理
2017/07/14 Javascript
es6新特性之 class 基本用法解析
2018/05/05 Javascript
浅谈vue首屏加载优化
2018/06/28 Javascript
详解vue-cli3使用
2018/08/14 Javascript
Vue项目中使用jquery的简单方法
2019/05/16 jQuery
python多线程之事件Event的使用详解
2018/04/27 Python
Python使用numpy产生正态分布随机数的向量或矩阵操作示例
2018/08/22 Python
python try except 捕获所有异常的实例
2018/10/18 Python
python 实现提取某个索引中某个时间段的数据方法
2019/02/01 Python
python使用yield压平嵌套字典的超简单方法
2019/11/02 Python
pycharm不能运行.py文件的解决方法
2020/02/12 Python
Mytheresa英国官网:拥有160多个奢侈品品牌
2016/10/09 全球购物
MATCHESFASHION.COM美国官网:英国奢侈品零售商
2018/10/29 全球购物
电子信息专业自荐书
2014/02/04 职场文书
《乌鸦和狐狸》教学反思
2014/02/08 职场文书
后勤部经理岗位职责
2014/02/23 职场文书
小学生教师节演讲稿
2014/09/03 职场文书
2014年销售助理工作总结
2014/12/01 职场文书
2015年安全生产责任书
2015/01/30 职场文书
人事局接收函
2015/01/31 职场文书
《百分数的认识》教学反思
2016/02/19 职场文书
python 解决微分方程的操作(数值解法)
2021/05/26 Python
详解Java实现设计模式之责任链模式
2021/06/23 Java/Android