Python常用的爬虫技巧总结


Posted in Python onMarch 28, 2016

用python也差不多一年多了,python应用最多的场景还是web快速开发、爬虫、自动化运维:写过简单网站、写过自动发帖脚本、写过收发邮件脚本、写过简单验证码识别脚本。

爬虫在开发过程中也有很多复用的过程,这里总结一下,以后也能省些事情。

1、基本抓取网页

get方法

import urllib2
 
url = "http://www.baidu.com"
response = urllib2.urlopen(url)
print response.read()

post方法

import urllib
import urllib2
 
url = "http://abcde.com"
form = {'name':'abc','password':'1234'}
form_data = urllib.urlencode(form)
request = urllib2.Request(url,form_data)
response = urllib2.urlopen(request)
print response.read()

2、使用代理IP

    在开发爬虫过程中经常会遇到IP被封掉的情况,这时就需要用到代理IP;

在urllib2包中有ProxyHandler类,通过此类可以设置代理访问网页,如下代码片段:

import urllib2
 
proxy = urllib2.ProxyHandler({'http': '127.0.0.1:8087'})
opener = urllib2.build_opener(proxy)
urllib2.install_opener(opener)
response = urllib2.urlopen('http://www.baidu.com')
print response.read()

3、Cookies处理

    cookies是某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密),python提供了cookielib模块用于处理cookies,cookielib模块的主要作用是提供可存储cookie的对象,以便于与urllib2模块配合使用来访问Internet资源.

代码片段:

import urllib2, cookielib
 
cookie_support= urllib2.HTTPCookieProcessor(cookielib.CookieJar())
opener = urllib2.build_opener(cookie_support)
urllib2.install_opener(opener)
content = urllib2.urlopen('http://XXXX').read()

    关键在于CookieJar(),它用于管理HTTP cookie值、存储HTTP请求生成的cookie、向传出的HTTP请求添加cookie的对象。整个cookie都存储在内存中,对CookieJar实例进行垃圾回收后cookie也将丢失,所有过程都不需要单独去操作。

  手动添加cookie

cookie = "PHPSESSID=91rurfqm2329bopnosfu4fvmu7; 
kmsign=55d2c12c9b1e3; 
KMUID=b6Ejc1XSwPq9o756AxnBAg="
request.add_header("Cookie", cookie)

4、伪装成浏览器

    某些网站反感爬虫的到访,于是对爬虫一律拒绝请求。所以用urllib2直接访问网站经常会出现HTTP Error 403: Forbidden的情况

对有些 header 要特别留意,Server 端会针对这些 header 做检查

  1.User-Agent 有些 Server 或 Proxy 会检查该值,用来判断是否是浏览器发起的 Request

  2.Content-Type 在使用 REST 接口时,Server 会检查该值,用来确定 HTTP Body 中的内容该怎样解析。

这时可以通过修改http包中的header来实现,代码片段如下:

import urllib2
 
headers = {
  'User-Agent':'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6'
}
request = urllib2.Request(
  url = 'http://my.oschina.net/jhao104/blog?catalog=3463517',
  headers = headers
)
print urllib2.urlopen(request).read()

5、页面解析

    对于页面解析最强大的当然是正则表达式,这个对于不同网站不同的使用者都不一样,就不用过多的说明,附两个比较好的网址:

正则表达式入门:https://3water.com/article/18526.htm

正则表达式在线测试:http://tools.3water.com/regex/javascript

其次就是解析库了,常用的有两个lxml和BeautifulSoup,对于这两个的使用介绍两个比较好的网站:

lxml:https://3water.com/article/67125.htm

BeautifulSoup:https://3water.com/article/43572.htm

对于这两个库,我的评价是,都是HTML/XML的处理库,Beautifulsoup纯python实现,效率低,但是功能实用,比如能用通过结果搜索获得某个HTML节点的源码;lxmlC语言编码,高效,支持Xpath

6、验证码的处理

对于一些简单的验证码,可以进行简单的识别。本人也只进行过一些简单的验证码识别。但是有些反人类的验证码,比如12306,可以通过打码平台进行人工打码,当然这是要付费的。

7、gzip压缩

    有没有遇到过某些网页,不论怎么转码都是一团乱码。哈哈,那说明你还不知道许多web服务具有发送压缩数据的能力,这可以将网络线路上传输的大量数据消减 60% 以上。这尤其适用于 XML web 服务,因为 XML 数据 的压缩率可以很高。

但是一般服务器不会为你发送压缩数据,除非你告诉服务器你可以处理压缩数据。

于是需要这样修改代码:

import urllib2, httplib
request = urllib2.Request('http://xxxx.com')
request.add_header('Accept-encoding', 'gzip')    1
opener = urllib2.build_opener()
f = opener.open(request)

这是关键:创建Request对象,添加一个 Accept-encoding 头信息告诉服务器你能接受 gzip 压缩数据

然后就是解压缩数据:

import StringIO
import gzip
 
compresseddata = f.read() 
compressedstream = StringIO.StringIO(compresseddata)
gzipper = gzip.GzipFile(fileobj=compressedstream) 
print gzipper.read()

8、多线程并发抓取

    单线程太慢的话,就需要多线程了,这里给个简单的线程池模板 这个程序只是简单地打印了1-10,但是可以看出是并发的。

虽然说python的多线程很鸡肋,但是对于爬虫这种网络频繁型,还是能一定程度提高效率的。

from threading import Thread
from Queue import Queue
from time import sleep
# q是任务队列
#NUM是并发线程总数
#JOBS是有多少任务
q = Queue()
NUM = 2
JOBS = 10
#具体的处理函数,负责处理单个任务
def do_somthing_using(arguments):
  print arguments
#这个是工作进程,负责不断从队列取数据并处理
def working():
  while True:
    arguments = q.get()
    do_somthing_using(arguments)
    sleep(1)
    q.task_done()
#fork NUM个线程等待队列
for i in range(NUM):
  t = Thread(target=working)
  t.setDaemon(True)
  t.start()
#把JOBS排入队列
for i in range(JOBS):
  q.put(i)
#等待所有JOBS完成
q.join()
Python 相关文章推荐
Python之eval()函数危险性浅析
Jul 03 Python
Python脚本实现DNSPod DNS动态解析域名
Feb 14 Python
简单理解Python中的装饰器
Jul 31 Python
python计算auc指标实例
Jul 13 Python
基于Python中numpy数组的合并实例讲解
Apr 04 Python
windows下python安装小白入门教程
Sep 18 Python
selenium3+python3环境搭建教程图解
Dec 07 Python
python中如何使用分步式进程计算详解
Mar 22 Python
Python判断变量是否是None写法代码实例
Oct 09 Python
使用bandit对目标python代码进行安全函数扫描的案例分析
Jan 27 Python
python中@contextmanager实例用法
Feb 07 Python
Python中使用tkFileDialog实现文件选择、保存和路径选择
May 20 Python
Python对数据库操作
Mar 28 #Python
Python字符串切片操作知识详解
Mar 28 #Python
python Django框架实现自定义表单提交
Mar 25 #Python
python Django批量导入数据
Mar 25 #Python
python Django批量导入不重复数据
Mar 25 #Python
用Python实现斐波那契(Fibonacci)函数
Mar 25 #Python
Python基础教程之正则表达式基本语法以及re模块
Mar 25 #Python
You might like
PHP 作用域解析运算符(::)
2010/07/27 PHP
php将文本文件转换csv输出的方法
2014/12/31 PHP
asp javascript 实现关闭窗口时保存数据的办法
2007/11/24 Javascript
js设置function参数默认值(适合没有传参情况)
2014/02/24 Javascript
Javascript实现网络监测的方法
2015/07/31 Javascript
js仿黑客帝国字母掉落效果代码分享
2020/11/08 Javascript
浅谈JavaScript超时调用和间歇调用
2015/08/30 Javascript
微信小程序 自定义对话框实例详解
2017/01/20 Javascript
微信小程序页面间通信的5种方式
2017/03/31 Javascript
easyui关于validatebox实现多重规则验证的方法(必看)
2017/04/12 Javascript
Node.js连接mongodb实例代码
2017/06/06 Javascript
实时监控input框,实现输入框与下拉框联动的实例
2018/01/23 Javascript
Vue.js 时间转换代码及时间戳转时间字符串
2018/10/16 Javascript
对layer弹出框中icon数字参数的说明介绍
2019/09/04 Javascript
vuex+axios+element-ui实现页面请求loading操作示例
2020/02/02 Javascript
[01:18:43]2014 DOTA2华西杯精英邀请赛5 24 iG VS DK
2014/05/25 DOTA
浅析python中的分片与截断序列
2016/08/09 Python
单利模式及python实现方式详解
2018/03/20 Python
Python编程中NotImplementedError的使用方法
2018/04/21 Python
Django 根据数据模型models创建数据表的实例
2018/05/27 Python
tensorflow学习教程之文本分类详析
2018/08/07 Python
Python实现数据可视化看如何监控你的爬虫状态【推荐】
2018/08/10 Python
Python 最强编辑器详细使用指南(PyCharm )
2019/09/16 Python
python Tensor和Array对比分析
2020/01/08 Python
用 Django 开发一个 Python Web API的方法步骤
2020/12/03 Python
python文件路径操作方法总结
2020/12/21 Python
使用CSS3滤镜的filter:blur属性制作毛玻璃模糊效果的方法
2016/07/08 HTML / CSS
Evisu官方网站:日本牛仔品牌,时尚街头设计风格
2016/12/30 全球购物
美国知名生活购物网站:Goop
2017/11/03 全球购物
物流专业大学应届生求职信
2013/11/03 职场文书
学雷锋宣传标语
2014/06/25 职场文书
2014年六五普法工作总结
2014/11/25 职场文书
优秀教师先进材料
2014/12/16 职场文书
大二学年个人总结
2015/03/03 职场文书
个人工作总结(管理人员)范文
2019/08/13 职场文书
Django实现drf搜索过滤和排序过滤
2021/06/21 Python