基于Pytorch版yolov5的滑块验证码破解思路详解


Posted in Python onFebruary 25, 2021

前言

本文将使用pytorch框架的目标识别技术实现滑块验证码的破解。我们这里选择了yolov5算法

例:输入图像

基于Pytorch版yolov5的滑块验证码破解思路详解

输出图像

基于Pytorch版yolov5的滑块验证码破解思路详解

可以看到经过检测之后,我们能很准确的定位到缺口的位置,并且能得到缺口的坐标,这样一来我们就能很轻松的实现滑动验证码的破解。

一.前期工作

yolov系列是常用的目标检测算法,yolov5不仅配置简单,而且在速度上也有不小的提升,我们很容易就能训练我们自己的数据集。
YOLOV5 Pytorch版本GIthub网址感谢这位作者的代码。

下载之后,是这样的格式

---data/
	Annotations/ 存放图片的标注文件(.xml)
	images/ 存放待训练的图片
	ImageSets/ 存放划分数据集的文件
	labels/ 存放图片的方框信息

其中只需要修改Annotations和images两个文件夹。
首先我们将待训练的图片放入images

数据集要感谢这位大神的整理https://github.com/tzutalin/labelImg,在这个基础上我增加了50张来自腾讯的验证码图片

数据集已上传百度云

链接: https://pan.baidu.com/s/1XS5KVoXqGHglfP0mZ3HJLQ

提取码: wqi8

基于Pytorch版yolov5的滑块验证码破解思路详解

然后我们需要对其进行标注,告诉计算机我们希望它识别什么内容。这时候我们需要精灵标注这款软件。免费而且功能强大,五星好评!

基于Pytorch版yolov5的滑块验证码破解思路详解

第一步选择images文件夹,第二步有几类就写几类,建议用英文。这里只有一类,即为缺失快的位置,命名为target。注意标注的时候要左右恰好卡住,不然获得的坐标就不精准。

标注完成后,点击导出,文件格式不用动,直接点确定,就会在images/outputs文件夹生成我们的标注文件。全部复制到Annotations文件夹即可。

回到主目录,运行makeTxt.py和voc_label.py,makeTxt直接运行即可,voc_label需要修改classes的值,这次只有一target

import xml.etree.ElementTree as ET
import pickle
import os
# os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表
from os import listdir, getcwd
from os.path import join


sets = ['train', 'test', 'val']
classes = ['target'] #之前标注时有几个类,这里就输入几个类

"""

............  

"""

进入data文件夹,修改coco.yaml的内容

# COCO 2017 dataset http://cocodataset.org
# Download command: bash yolov5/data/get_coco2017.sh
# Train command: python train.py --data ./data/coco.yaml
# Dataset should be placed next to yolov5 folder:
#  /parent_folder
#   /coco
#   /yolov5


# train and val datasets (image directory or *.txt file with image paths)
train: ../coco/train2017.txt # 118k images
val: ../coco/val2017.txt # 5k images
test: ../coco/test-dev2017.txt # 20k images for submission to https://competitions.codalab.org/competitions/20794

# number of classes
nc: 1

# class names
names: ['target']

# Print classes
# with open('data/coco.yaml') as f:
#  d = yaml.load(f, Loader=yaml.FullLoader) # dict
#  for i, x in enumerate(d['names']):
#   print(i, x)

再进入models文件夹,修改yolov5s.yaml的内容

nc: 1 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
"""
''''''''''''
"""

至此配置环节终于结束了,可以开始训练了!

打开train.py,我们一般只需要修改?weights,?cfg,?data,?epochs几个设置即可

parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
parser.add_argument('--log-artifacts', action='store_true', help='log artifacts, i.e. final trained model')
parser.add_argument('--workers', type=int, default=4, help='maximum number of dataloader workers')
parser.add_argument('--project', default='runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()

直接运行train.py,开始训练!
。。。。。。。。。。。。。。。。

训练完成后,进入runs/train/exp/weights,我们复制best.pt到主目录。

最后,我们打开datect.py,修改几个属性

parser = argparse.ArgumentParser()
  parser.add_argument('--weights', nargs='+', type=str, default='best.pt', help='model.pt path(s)')
  parser.add_argument('--source', type=str, default='test.jpg', help='source') # file/folder, 0 for webcam
  parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
  parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
  parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  parser.add_argument('--view-img', action='store_true', help='display results')
  parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
  parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
  parser.add_argument('--augment', action='store_true', help='augmented inference')
  parser.add_argument('--update', action='store_true', help='update all models')
  parser.add_argument('--project', default='runs/detect', help='save results to project/name')
  parser.add_argument('--name', default='exp', help='save results to project/name')
  parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  opt = parser.parse_args()

?source属性我们可以先修改为data/images,对自己的数据集进行识别看看能否正常识别。
小Tips,如果执行后不报错,但没有检测框的话,试试看修改?device为cpu,cuda版本太低会导致使用gpu没有检测框(问就是被这个小问题迫害了很久 --_?)。

最后在112行左右的位置,添加一个print

基于Pytorch版yolov5的滑块验证码破解思路详解

这时执行程序就会返回方框的位置信息和自信度了

基于Pytorch版yolov5的滑块验证码破解思路详解

我们的前驱工作终于完成了~

二.编写爬虫

1.寻找合适的网站

经过一番搜寻,最后锁定了https://007.qq.com/online.html

因为它的网站结构很方便我们的操作。

2.导入依赖库

这里我们采用selenium来模拟人类的操作。
关于selenium的安装和webdriver的安装方法本文不作延伸。

from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
import requests,re
import os
import requests
import re 
import time
from selenium.webdriver import ActionChains

3.编写破解程序

访问网站,发现破解之前要依次点击

基于Pytorch版yolov5的滑块验证码破解思路详解

编写代码

def run()
	driver = webdriver.Chrome()
	
	headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.106 Safari/537.36"}
	#伪装请求头
	
	
	         
	driver.get('https://007.qq.com/online.html') #访问网站
	
	driver.find_element_by_xpath('/html/body/div[1]/section[1]/div/div/div/div[2]/div[1]/a[2]').click()
	driver.find_element_by_xpath('//*[@id="code"]').click()
	#模拟点击操作

继续

基于Pytorch版yolov5的滑块验证码破解思路详解

这里便是我们要识别的图片,不过直接定位的话并不能定位到,因为这段代码是由iframe包裹着的,我们需要先定位到这个iframe

time.sleep(2)      #休眠2秒,防止报错  
	driver.switch_to_frame("tcaptcha_iframe") #根据iframe的id定位到iframe
	target = driver.find_element_by_xpath("/html/body/div/div[3]/div[2]/div[1]/div[2]/img").get_attribute("src")
	#得到图片的原地址
	
	response = requests.get(target,headers=headers)	#访问图片地址
	 
	img = response.content
	with open( 'test.jpg','wb' ) as f:
	  f.write(img)		#将图片保存到主目录,命名为test.jpg

现在图片也有了,检测程序也准备好了,那么开始检测吧!

'''
	os.popen()的用法,简单来说就是执行cmd命令,并得到cmd的返回值
	这里是执行detect.py
	'''
	
	result = os.popen("python detect.py").readlines() #执行目标检测程序
	list = []
	for line in result:
	  list.append(line)   #将cmd的返回信息存入列表
	print(list)
	a = re.findall("(.*):(.*]).(.*)\\n",list[-4]) #获得图片的位置信息
	print(a)
	print(len(a))
	if len(a) != 0:     #如果能检测到方框
	  tensor=a[0][1]
	  pro = a[0][2]
	  list_=tensor[2:-1].split(",")
	  
	  location = []
	  for i in list_:
	    print(i)
	    b = re.findall("tensor(.*)",i)[0]
	    location.append(b[1:-2])
	  #提取出来方框左上角的xy和右下角的xy
	  drag1 = driver.find_element_by_xpath('/html/body/div/div[3]/div[2]/div[2]/div[2]/div[1]') 
	  #定位到拖动按钮处
	  
	  action_chains = ActionChains(driver) #实例化鼠标操作类
	  action_chains.drag_and_drop_by_offset(drag1, int(int(location[2])/2-85), 0).perform()
	  #模拟鼠标按住并拖动距离 X 后再放开
	  input("等待操作")  
	  driver.quit() 
	else:
	  driver.quit() 
	  print("未能识别")

这里着重说一下

action_chains.drag_and_drop_by_offset(drag1, int(int(location[2])/2-85), 0).perform()

为什么要拖 int(int(location[2])/2-85) 远。

首先location这个列表的格式为[左上x,左上y,右下x,右下y]location[2]即为取出右下角的x值。

我们保存到本地的验证码图片分辨率如下

基于Pytorch版yolov5的滑块验证码破解思路详解

但网站显示的图片大小

基于Pytorch版yolov5的滑块验证码破解思路详解

x轴刚好为本地图片的一半,所以int(location[2]/2)得到的便是

基于Pytorch版yolov5的滑块验证码破解思路详解

但是待拖动的方块本身距离左边还有一定距离,通过分析发现

基于Pytorch版yolov5的滑块验证码破解思路详解

这个小方块的最左边距离图片的最左边的距离即为红框中的26,即

基于Pytorch版yolov5的滑块验证码破解思路详解

26+68-10=84,因为这个10是试出来的长度,我们就令这段距离为85吧

至此 int(int(location[2])/2-85) 的由来也解释清楚了。
大功告成啦,那让我们看一遍演示吧!

基于Pytorch版yolov5的滑块验证码破解思路详解

selenium完整代码如下

from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
import requests,re
import os
import requests
import re 
import time
from selenium.webdriver import ActionChains

def run()
	driver = webdriver.Chrome()
	
	headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.106 Safari/537.36"}
	#伪装请求头 
	driver.get('https://007.qq.com/online.html') #访问网站
	driver.find_element_by_xpath('/html/body/div[1]/section[1]/div/div/div/div[2]/div[1]/a[2]').click()
	driver.find_element_by_xpath('//*[@id="code"]').click()
	#模拟点击操作
  time.sleep(2)      #休眠2秒,防止报错  
	driver.switch_to_frame("tcaptcha_iframe") #根据iframe的id定位到iframe
	target = driver.find_element_by_xpath("/html/body/div/div[3]/div[2]/div[1]/div[2]/img").get_attribute("src")
	#得到图片的原地址
	
	response = requests.get(target,headers=headers)	#访问图片地址
	 
	img = response.content
	with open( 'test.jpg','wb' ) as f:
	  f.write(img)		#将图片保存到主目录,命名为test.jpg
	'''
	os.popen()的用法,简单来说就是执行cmd命令,并得到cmd的返回值
	这里是执行detect.py
	'''
	result = os.popen("python detect.py").readlines() #执行目标检测程序
	list = []
	for line in result:
	  list.append(line)   #将cmd的返回信息存入列表
	print(list)
	a = re.findall("(.*):(.*]).(.*)\\n",list[-4]) #获得图片的位置信息
	print(a)
	print(len(a))
	if len(a) != 0:     #如果能检测到方框
	  tensor=a[0][1]
	  pro = a[0][2]
	  list_=tensor[2:-1].split(",")
	  
	  location = []
	  for i in list_:
	    print(i)
	    b = re.findall("tensor(.*)",i)[0]
	    location.append(b[1:-2])
	  #提取出来方框左上角的xy和右下角的xy
	  drag1 = driver.find_element_by_xpath('/html/body/div/div[3]/div[2]/div[2]/div[2]/div[1]') 
	  #定位到拖动按钮处
	  action_chains = ActionChains(driver) #实例化鼠标操作类
	  action_chains.drag_and_drop_by_offset(drag1, int(int(location[2])/2-85), 0).perform()
	  #模拟鼠标按住并拖动距离 X 后再放开
	  input("等待操作")  
	  driver.quit() 
	else:
	  driver.quit() 
	  print("未能识别")    

while True:   
  run()

到此这篇关于基于Pytorch版yolov5的滑块验证码破解思路详解的文章就介绍到这了,更多相关Pytorch滑块验证码破解内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
详解python进行mp3格式判断
Dec 23 Python
python实现的多线程端口扫描功能示例
Jan 21 Python
python放大图片和画方格实现算法
Mar 30 Python
详解python中init方法和随机数方法
Mar 13 Python
Python opencv实现人眼/人脸识别以及实时打码处理
Apr 29 Python
Python 操作 ElasticSearch的完整代码
Aug 04 Python
python并发编程多进程 模拟抢票实现过程
Aug 20 Python
TensorFlow基本的常量、变量和运算操作详解
Feb 03 Python
python实现TCP文件传输
Mar 20 Python
Python实现UDP程序通信过程图解
May 15 Python
简单了解python关键字global nonlocal区别
Sep 21 Python
一文搞懂Python Sklearn库使用
Aug 23 Python
python实现不同数据库间数据同步功能
Feb 25 #Python
使用python实现学生信息管理系统
Feb 25 #Python
pytho matplotlib工具栏源码探析一之禁用工具栏、默认工具栏和工具栏管理器三种模式的差异
Feb 25 #Python
使用tkinter实现三子棋游戏
Feb 25 #Python
python matplotlib工具栏源码探析二之添加、删除内置工具项的案例
Feb 25 #Python
python matplotlib工具栏源码探析三之添加、删除自定义工具项的案例详解
Feb 25 #Python
python实现简单文件读写函数
Feb 25 #Python
You might like
PHP 验证登陆类分享
2015/03/13 PHP
PHP数组相加操作及与array_merge的区别浅析
2016/11/26 PHP
php 猴子摘桃的算法
2017/06/20 PHP
为Yahoo! UI Extensions Grid增加内置的可编辑器
2007/03/10 Javascript
Javascript实现动态菜单添加的实例代码
2013/07/05 Javascript
通过url查找a元素并点击
2014/04/09 Javascript
jQuery实现感应鼠标动画效果自动伸长的输入框实例
2015/02/24 Javascript
深入浅析Extjs中store分组功能的使用方法
2016/04/20 Javascript
微信小程序 获取当前地理位置和经纬度实例代码
2016/12/05 Javascript
jQuery Validate让普通按钮触发表单验证的方法
2016/12/15 Javascript
通过sails和阿里大于实现短信验证
2017/01/04 Javascript
vue实现ToDoList简单实例
2017/02/07 Javascript
解决layui上传文件提示上传异常,实际文件已经上传成功的问题
2018/08/19 Javascript
微信小程序获取用户绑定手机号方法示例
2019/07/21 Javascript
使用apifm-wxapi模块中的问题及解决方法
2019/08/05 Javascript
原生js实现可兼容PC和移动端的拖动滑块功能详解【测试可用】
2019/08/15 Javascript
WEB前端性能优化的7大手段详解
2020/02/04 Javascript
10种检测Python程序运行时间、CPU和内存占用的方法
2015/04/01 Python
一个基于flask的web应用诞生 bootstrap框架美化(3)
2017/04/11 Python
Python实现统计文本文件字数的方法
2017/05/05 Python
Python面向对象编程之继承与多态详解
2018/01/16 Python
分析Python中解析构建数据知识
2018/01/20 Python
使用python实现名片管理系统
2020/06/18 Python
CSS3 Columns分列式布局方法简介
2014/05/03 HTML / CSS
预订奥兰多和佛罗里达州公园门票:FloridaTix
2018/01/03 全球购物
丝芙兰波兰:Sephora.pl
2018/03/25 全球购物
美津浓巴西官方网站:Mizuno巴西
2019/07/24 全球购物
Piercing Pagoda官网:耳环、戒指、项链、手链等
2020/09/28 全球购物
水污染治理专业毕业生推荐信
2013/11/14 职场文书
总经理驾驶员岗位职责
2013/12/04 职场文书
简历自我评价怎么写好呢?
2014/01/04 职场文书
工程专业求职自荐书范文
2014/02/08 职场文书
共产党员承诺书
2014/03/25 职场文书
2015年驾驶员工作总结
2015/04/29 职场文书
《攀登者》:“海拔8000米以上,你不能指望任何人”
2019/11/25 职场文书
深入理解python协程
2021/06/15 Python