Python数据可视化常用4大绘图库原理详解


Posted in Python onOctober 23, 2020

今天我们就用一篇文章,带大家梳理matplotlib、seaborn、plotly、pyecharts的绘图原理,让大家学起来不再那么费劲!

Python数据可视化常用4大绘图库原理详解

1. matplotlib绘图原理

关于matplotlib更详细的绘图说明,大家可以参考下面这篇文章,相信你看了以后一定学得会。

matplotlib绘图原理:http://suo.im/678FCo

1)绘图原理说明

通过我自己的学习和理解,我将matplotlib绘图原理高度总结为如下几步:

导库;创建figure画布对象;获取对应位置的axes坐标系对象;调用axes对象,进行对应位置的图形绘制;显示图形;

2)案例说明

# 1.导入相关库
import matplotlib as mpl
import matplotlib.pyplot as plt
# 2.创建figure画布对象
figure = plt.figure()
# 3.获取对应位置的axes坐标系对象
axes1 = figure.add_subplot(2,1,1)
axes2 = figure.add_subplot(2,1,2)
# 4.调用axes对象,进行对应位置的图形绘制
axes1.plot([1,3,5,7],[4,9,6,8])
axes2.plot([1,2,4,5],[8,4,6,2])
# 5.显示图形
figure.show()

结果如下:

Python数据可视化常用4大绘图库原理详解

2. seaborn绘图原理

在这四个绘图库里面,只有matplotlib和seaborn存在一定的联系,其余绘图库之间都没有任何联系,就连绘图原理也都是不一样的。

seaborn是matplotlib的更高级的封装。因此学习seaborn之前,首先要知道matplotlib的绘图原理。由于seaborn是matplotlib的更高级的封装,对于matplotlib的那些调优参数设置,也都可以在使用seaborn绘制图形之后使用。

我们知道,使用matplotlib绘图,需要调节大量的绘图参数,需要记忆的东西很多。而seaborn基于matplotlib做了更高级的封装,使得绘图更加容易,它不需要了解大量的底层参数,就可以绘制出很多比较精致的图形。不仅如此,seaborn还兼容numpy、pandas数据结构,在组织数据上起了很大作用,从而更大程度上的帮助我们完成数据可视化。

由于seaborn的绘图原理,和matplotlib的绘图原理一致,这里也就不详细介绍了,大家可以参考上面matplotlib的绘图原理,来学习seaborn究竟如何绘图,这里还是提供一个网址给大家。

seaborn绘图原理:http://suo.im/5D3VPX

1)案例说明

# 1.导入相关库
import seaborn as sns
import matplotlib.pyplot as plt

df = pd.read_excel("data.xlsx",sheet_name="数据源")

sns.set_style("dark")
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
# 注意:estimator表示对分组后的销售数量求和。默认是求均值。
sns.barplot(x="品牌",y="销售数量",data=df,color="steelblue",orient="v",estimator=sum)
plt.show()

结果如下:

Python数据可视化常用4大绘图库原理详解

注意:可以看到在上述的绘图代码中,你应该有这样一个感受,图中既有matplotlib的绘图代码,也有seaborn的绘图代码。其实就是这样的,我们就是按照matplobt的绘图原理进行图形绘制,只是有些地方改成seaborn特有的代码即可,剩下的调整格式,都可以使用matplotlib中的方法进行调整

3. plotly绘图原理

首先在介绍这个图的绘图原理之前,我们先简单介绍一下plotly这个绘图库。

  • plotly是一个基于javascript的绘图库,plotly绘图种类丰富,效果美观;
  • 易于保存与分享plotly的绘图结果,并且可以与Web无缝集成;
  • ploty默认的绘图结果,是一个HTML网页文件,通过浏览器可以直接查看;

它的绘图原理和matplotlib、seaborn没有任何关系,你需要单独去学习它。同样我还是提供了一个网址给你,让你更详细的学习plotly。

plotly绘图原理:http://suo.im/5vxNTu

1)绘图原理说明

通过我自己的学习和理解,我将plotly绘图原理高度总结为如下几步:

  • 绘制图形轨迹,在ployly里面叫做trace,每一个轨迹是一个trace。
  • 将轨迹包裹成一个列表,形成一个“轨迹列表”。一个轨迹放在一个列表中,多个轨迹也是放在一个列表中。
  • 创建画布的同时,并将上述的轨迹列表,传入到Figure()中。
  • 使用Layout()添加其他的绘图参数,完善图形。
  • 展示图形。

2)案例说明

import numpy as np
import pandas as pd
import plotly as py
import plotly.graph_objs as go
import plotly.expression as px
from plotly import tools

df = pd.read_excel("plot.xlsx")
# 1.绘制图形轨迹,在ployly里面叫做`trace`,每一个轨迹是一个trace。
trace0 = go.Scatter(x=df["年份"],y=df["城镇居民"],name="城镇居民")
trace1 = go.Scatter(x=df["年份"],y=df["农村居民"],name="农村居民")
# 2.将轨迹包裹成一个列表,形成一个“轨迹列表”。一个轨迹放在一个列表中,多个轨迹也是放在一个列表中。
data = [trace0,trace1]
# 3.创建画布的同时,并将上述的`轨迹列表`,传入到`Figure()`中。
fig = go.Figure(data)
# 4.使用`Layout()`添加其他的绘图参数,完善图形。
fig.update_layout(
  title="城乡居民家庭人均收入",
  xaxis_title="年份",
  yaxis_title="人均收入(元)"
)
# 5.展示图形。
fig.show()

结果如下:

Python数据可视化常用4大绘图库原理详解

4. pyecharts绘图原理

Echarts是一个由百度开源的数据可视化工具,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而python是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上了数据可视化时,pyecharts诞生了。

pyecharts分为v0.5和v1两个大版本,v0.5和v1两个版本不兼容,v1是一个全新的版本,因此我们的学习尽量都是基于v1版本进行操作。

和plotly一样,pyecharts的绘图原理也是完全不同于matplotlib和seaborn,我们需要额外的去学习它们的绘图原理,基于此,同样提供一个网址给你,让你更详细的学习pyecharts。

pyecharts的绘图原理:http://suo.im/5S1PF1

1)绘图原理说明

通过我自己的学习和理解,我将plotly绘图原理高度总结为如下几步:

  • 选择图表类型;
  • 声明图形类并添加数据;
  • 选择全局变量;
  • 显示及保存图表;

2)案例说明

# 1.选择图表类型:我们使用的是线图,就直接从charts模块中导入Line这个模块;
from pyecharts.charts import Line
import pyecharts.options as opts
import numpy as np

x = np.linspace(0,2 * np.pi,100)
y = np.sin(x)

(
 # 2.我们绘制的是Line线图,就需要实例化这个图形类,直接Line()即可;
 Line()
 # 3.添加数据,分别给x,y轴添加数据;
 .add_xaxis(xaxis_data=x)
 .add_yaxis(series_name="绘制线图",y_axis=y,label_opts=opts.LabelOpts(is_show=False))
 .set_global_opts(title_opts=opts.TitleOpts(title="我是标题",subtitle="我是副标题",title_link="https://www.baidu.com/"),
         tooltip_opts=opts.TooltipOpts())
).render_notebook() # 4.render_notebook()用于显示及保存图表;

结果如下:

Python数据可视化常用4大绘图库原理详解

小结

通过上面的学习,我相信肯定会让大家对于这些库的绘图原理,一定会有一个新的认识。

其实其实不管是任何编程软件的绘图库,都有它的绘图原理。我们与其盲目的去绘制各种各样的图形,不如先搞清楚它们的套路后,再去进行绘图库的图形练习,这样下去,我觉得大家会有一个很大的提高。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python读取html中指定元素生成excle文件示例
Apr 03 Python
Python写的Discuz7.2版faq.php注入漏洞工具
Aug 06 Python
Python中字典的基本知识初步介绍
May 21 Python
python基础练习之几个简单的游戏
Nov 10 Python
pandas DataFrame 警告(SettingWithCopyWarning)的解决
Jul 23 Python
在Python3 numpy中mean和average的区别详解
Aug 24 Python
pymysql模块的操作实例
Dec 17 Python
在 Pycharm 安装使用black的方法详解
Apr 02 Python
Anaconda使用IDLE的实现示例
Sep 23 Python
如何用PyPy让你的Python代码运行得更快
Dec 02 Python
为2021年的第一场雪锦上添花:用matplotlib绘制雪花和雪景
Jan 05 Python
python爬虫爬取某网站视频的示例代码
Feb 20 Python
Python+OpenCV图像处理——实现轮廓发现
Oct 23 #Python
python 带时区的日期格式化操作
Oct 23 #Python
Python可视化工具如何实现动态图表
Oct 23 #Python
python 匿名函数与三元运算学习笔记
Oct 23 #Python
Numpy中np.random.rand()和np.random.randn() 用法和区别详解
Oct 23 #Python
Python+OpenCV图像处理——实现直线检测
Oct 23 #Python
使用Python Tkinter实现剪刀石头布小游戏功能
Oct 23 #Python
You might like
php 静态化实现代码
2009/03/20 PHP
Zend Framework动作助手Json用法实例分析
2016/03/05 PHP
PHP二分查找算法示例【递归与非递归方法】
2016/09/29 PHP
PHP完全二叉树定义与实现方法示例
2017/10/09 PHP
js 操作符实例代码
2009/10/24 Javascript
利用google提供的API(JavaScript接口)获取网站访问者IP地理位置的代码详解
2010/07/24 Javascript
JQueryiframe页面操作父页面中的元素与方法(实例讲解)
2013/11/19 Javascript
浅析jquery ajax异步调用方法中不能给全局变量赋值的原因及解决方法
2014/01/10 Javascript
jQuery的animate函数学习记录
2014/08/08 Javascript
JavaScript获取伪元素(Pseudo-Element)属性的方法技巧
2015/03/13 Javascript
JavaScript动态插入CSS的方法
2015/12/10 Javascript
vue实现添加标签demo示例代码
2017/01/21 Javascript
微信小程序中上传图片并进行压缩的实现代码
2018/08/28 Javascript
javascript获取元素的计算样式
2019/05/24 Javascript
vue指令做滚动加载和监听等
2019/05/26 Javascript
[01:56]生活中的妖精之七夕特别档
2016/08/09 DOTA
下载糗事百科的内容_python版
2008/12/07 Python
Python多线程编程(一):threading模块综述
2015/04/05 Python
python基础教程之分支、循环简单用法
2016/06/16 Python
Python中元组,列表,字典的区别
2017/05/21 Python
Java及python正则表达式详解
2017/12/27 Python
简单实现Python爬取网络图片
2018/04/01 Python
Python中将变量按行写入txt文本中的方法
2018/04/03 Python
对python xlrd读取datetime类型数据的方法详解
2018/12/26 Python
python做反被爬保护的方法
2019/07/01 Python
基于pytorch的保存和加载模型参数的方法
2019/08/17 Python
python实现12306登录并保存cookie的方法示例
2019/12/17 Python
Python尾递归优化实现代码及原理详解
2020/10/09 Python
Aquatalia官网:意大利著名鞋履品牌
2019/09/26 全球购物
编程输出如下图形
2013/11/24 面试题
幼儿园毕业寄语
2014/04/03 职场文书
2014办公室副主任四风对照检查材料思想汇报
2014/09/20 职场文书
2015年教师节感恩寄语
2015/03/23 职场文书
入党积极分子党小组意见
2015/06/02 职场文书
超级实用的公文标题大全!
2019/07/19 职场文书
TypeScript实用技巧 Nominal Typing名义类型详解
2022/09/23 Javascript