Python2比较当前图片跟图库哪个图片相似的方法示例


Posted in Python onSeptember 28, 2019

本文实例讲述了Python2比较当前图片跟图库哪个图片相似的方法。分享给大家供大家参考,具体如下:

# -*- coding: utf-8 -*-
'''
Created on 2019年7月22日
'''
from selenium import webdriver
from time import sleep
from PIL import Image
import random
import os
import cv2
import numpy as np
url ="URL"
driver = webdriver.Chrome()
driver.implicitly_wait(10)
driver.maximize_window()
driver.get(url)
sleep(2)
driver.save_screenshot("E:/test/das.png")
p1=r'E:/test/das1.png'
p2=r'E:/test/das2.png'
p3=r'E:/test/das3.png'
p4=r'E:/test/das4.png'
element = driver.find_element_by_id("imgcode")
left = element.location['x']
top = element.location['y']
right = element.location['x'] + element.size['width']
bottom = element.location['y'] + element.size['height']
im1 = Image.open(r'E:/test/das.png')
im1 = im1.crop((left, top, right, bottom))
im1.save(r"E:/test/dascode.png")
img = Image.open("E:/test/dascode.png")
cropped = img.crop((0, 0, 25, 30)) # (left, upper, right, lower)
cropped.save(p1)
cropped = img.crop((25, 0, 50, 30)) # (left, upper, right, lower)
cropped.save(p2)
cropped = img.crop((50, 0, 75, 30)) # (left, upper, right, lower)
cropped.save(p3)
cropped = img.crop((75, 0, 96, 30)) # (left, upper, right, lower)
cropped.save(p4)
def getGray(image_file):
  tmpls=[]
  for h in range(0, image_file.size[1]):#h
    for w in range(0, image_file.size[0]):#w
      tmpls.append( image_file.getpixel((w,h)) )
  return tmpls
def getAvg(ls):#获取平均灰度值
  return sum(ls)/len(ls)
def aHash(fne):
  image_file = Image.open(fne) # 打开
  image_file=image_file.resize((35,35))#重置图片大小我12px X 12px
  image_file=image_file.convert("L")#转256灰度图
  Grayls=getGray(image_file)#灰度集合
  avg=getAvg(Grayls)#灰度平均值
  bitls=''#接收获取0或1
  for h in range(1, image_file.size[1]-1):#h
    for w in range(1, image_file.size[0]-1):#w
      if image_file.getpixel((w,h))>=avg:#像素的值比较平均值 大于记为1 小于记为0
        bitls=bitls+'1'
      else:
        bitls=bitls+'0'
  return bitls
def getMH(i1,i2):
  a=aHash(i1)
  b=aHash(i2)
  dist = 0;
  for i in range(0,len(a)):
    if a[i]==b[i]:
      dist=dist+1
  return dist
def match(a,rootdir):
  list = os.listdir(rootdir) 
  li=[]
  for i in list:
    re=getMH(a,rootdir+"/"+i)
    li.append(re)
  b=str(li.index(max(li))+1)  
  a=li.index(max(li))
  return b,list[a].split(".")[0]
a=match('E:/test/das4.png',"E:/test/pic4")
print a

另附参考的

# -*- coding: utf-8 -*-
'''
Created on 2018年5月17日
'''
from selenium import webdriver
from PIL import Image
import requests
import time
import base64
import base64
import requests
from urllib import urlencode
import json
# requests.packages.urllib3.disable_warnings()
import datetime
from time import strftime
from time import sleep
from PIL import Image
# import pytesseract
from PIL import Image
import os
import cv2
from numpy import average, dot, linalg
import heapq
import collections
from lib.readConfig import Readconfig
conf=Readconfig()
filedir=conf.getConfigValue("filedir")
def getGray(image_file):
  tmpls=[]
  for h in range(0, image_file.size[1]):#h
    for w in range(0, image_file.size[0]):#w
      tmpls.append( image_file.getpixel((w,h)) )
  return tmpls
def getAvg(ls):#获取平均灰度值
  return sum(ls)/len(ls)
def getMH(i1,i2):
  a=getImgHash(i1)
  b=getImgHash(i2)
  dist = 0;
  for i in range(0,len(a)):
    if a[i]==b[i]:
      dist=dist+1
  return dist
def getImgHash(fne):
  image_file = Image.open(fne) # 打开
  image_file=image_file.resize((35,35))#重置图片大小我12px X 12px
  image_file=image_file.convert("L")#转256灰度图
  Grayls=getGray(image_file)#灰度集合
  avg=getAvg(Grayls)#灰度平均值
  bitls=''#接收获取0或1
  for h in range(1, image_file.size[1]-1):#h
    for w in range(1, image_file.size[0]-1):#w
      if image_file.getpixel((w,h))>=avg:#像素的值比较平均值 大于记为1 小于记为0
        bitls=bitls+'1'
      else:
        bitls=bitls+'0'
  return bitls
def match1(a,rootdir):
  list = os.listdir(rootdir) 
  li=[]
  for i in list:
#     print rootdir+"/"+i
    re=getMH(a,rootdir+"/"+i)
    li.append(re)
#   print li
#   print max(li)
  b=str(li.index(max(li))+1)  
  return b
def g_code(pic):
  dic={"1":"2","2":"3","3":"4","4":"5","5":"6","6":"7","7":"8","8":"9",
"9":"a","10":"b","11":"c","12":"d","13":"e","14":"f","15":"g","16":"h",
"17":"i","18":"j","19":"k","20":"m","21":"n","22":"p","23":"q","24":"r",
"25":"s","26":"t","27":"u","28":"v","29":"w","30":"x","31":"y","32":"z"}
  img = Image.open(pic)
  a=img.size[0]
  b=img.size[1]
  p1=filedir+r'eos_tdym/lib/pic/das1.png'
  p2=filedir+r'eos_tdym/lib/pic/das2.png'
  p3=filedir+r'eos_tdym/lib/pic/das3.png'
  p4=filedir+r'eos_tdym/lib/pic/das4.png'
  dir1=filedir+r'eos_tdym/lib/pic/pic1'
  dir2=filedir+r'eos_tdym/lib/pic/pic2'
  dir3=filedir+r'eos_tdym/lib/pic/pic3'
  dir4=filedir+r'eos_tdym/lib/pic/pic4'
  cropped = img.crop((0, 0, 25, 30)) # (left, upper, right, lower)
  cropped.save(p1)
  cropped = img.crop((25, 0, 50, 30)) # (left, upper, right, lower)
  cropped.save(p2)
  cropped = img.crop((50, 0, 75, 30)) # (left, upper, right, lower)
  cropped.save(p3)
  cropped = img.crop((75, 0, 96, 30)) # (left, upper, right, lower)
  cropped.save(p4)
  re1=str(match1(p1,dir1))
  re2=str(match1(p2,dir2))
  re3=str(match1(p3,dir3))
  re4=str(match1(p4,dir4))
  print u"获取到验证码:"+dic[re1]+dic[re2]+dic[re3]+dic[re4]
  return dic[re1],dic[re2],dic[re3],dic[re4]
def g_code1(pic):
  dic={"1":"2","2":"3","3":"4","4":"5","5":"6","6":"7","7":"8","8":"9",
"9":"a","10":"b","11":"c","12":"d","13":"e","14":"f","15":"g","16":"h",
"17":"i","18":"j","19":"k","20":"m","21":"n","22":"p","23":"q","24":"r",
"25":"s","26":"t","27":"u","28":"v","29":"w","30":"x","31":"y","32":"z"}
  img = Image.open(pic)
  a=img.size[0]
  b=img.size[1]
  p1="pic5/das1.png"
  p2="pic5/das2.png"
  p3="pic5/das3.png"
  p4="pic5/das4.png"
  dir1="pic1"
  dir2="pic2"
  dir3="pic3"
  dir4="pic4"
  cropped = img.crop((0, 0, 25, 30)) # (left, upper, right, lower)
  cropped.save(p1)
  cropped = img.crop((25, 0, 50, 30)) # (left, upper, right, lower)
  cropped.save(p2)
  cropped = img.crop((50, 0, 75, 30)) # (left, upper, right, lower)
  cropped.save(p3)
  cropped = img.crop((75, 0, 96, 30)) # (left, upper, right, lower)
  cropped.save(p4)
  re1=match1(p1,dir1)
  re2=match1(p2,dir2)
  re3=match1(p3,dir3)
  re4=match1(p4,dir4)
  print dic[re1]
  print dic[re2]
  print dic[re3]
  print dic[re4]
  return dic[re1],dic[re2],dic[re3],dic[re4]

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
Python学习资料
Feb 08 Python
解读Python中degrees()方法的使用
May 18 Python
详解python中字典的循环遍历的两种方式
Feb 07 Python
浅谈Django自定义模板标签template_tags的用处
Dec 20 Python
pandas按若干个列的组合条件筛选数据的方法
Apr 11 Python
django一对多模型以及如何在前端实现详解
Jul 24 Python
Python使用enumerate获取迭代元素下标
Feb 03 Python
python爬虫开发之selenium模块详细使用方法与实例全解
Mar 09 Python
Django models filter筛选条件详解
Mar 16 Python
python判断字符串以什么结尾的实例方法
Sep 18 Python
pycharm安装深度学习pytorch的d2l包失败问题解决
Mar 25 Python
python使用opencv实现马赛克效果示例
Sep 28 #Python
python打包成so文件过程解析
Sep 28 #Python
python基于FTP实现文件传输相关功能代码实例
Sep 28 #Python
python网络爬虫 Scrapy中selenium用法详解
Sep 28 #Python
在vscode中配置python环境过程解析
Sep 28 #Python
python爬虫 线程池创建并获取文件代码实例
Sep 28 #Python
python 单线程和异步协程工作方式解析
Sep 28 #Python
You might like
粗略计算在线时间,bug:ip相同
2006/12/09 PHP
五个PHP程序员工具
2008/05/26 PHP
ThinkPHP模板之变量输出、自定义函数与判断语句用法
2014/11/01 PHP
php线性表的入栈与出栈实例分析
2015/06/12 PHP
php提取身份证号码中的生日日期以及验证是否为成年人的函数
2015/09/29 PHP
拖动一个HTML元素
2006/12/22 Javascript
从sohu弄下来的flash中展示图片的代码
2007/04/27 Javascript
建议大家看下JavaScript重要知识更新
2007/07/08 Javascript
有关js的变量作用域和this指针的讨论
2010/12/16 Javascript
js通过地址栏给action传值(中文乱码全是问号)
2013/05/02 Javascript
JavaScript使用focus()设置焦点失败的解决方法
2014/09/03 Javascript
Markdown与Bootstrap相结合实现图片自适应属性
2016/05/04 Javascript
jquery无法为动态生成的元素添加点击事件的解决方法(推荐)
2016/12/26 Javascript
Javascript仿京东放大镜的效果
2017/03/01 Javascript
Angularjs的启动过程分析
2017/07/18 Javascript
vue修改对象的属性值后页面不重新渲染的实例
2018/08/09 Javascript
你了解vue3.0响应式数据怎么实现吗
2019/06/07 Javascript
微信小程序 网络通信实现详解
2019/07/23 Javascript
基于JavaScript 实现拖放功能
2019/09/12 Javascript
浅谈vue中$bus的使用和涉及到的问题
2020/07/28 Javascript
[03:09]2014DOTA2国际邀请赛 Mushi前队友送上祝福
2014/07/12 DOTA
[46:37]LGD vs TNC 2019国际邀请赛小组赛 BO2 第二场 8.15
2019/08/16 DOTA
Python爬取网易云音乐上评论火爆的歌曲
2017/01/19 Python
python中的for循环
2018/09/28 Python
通过pykafka接收Kafka消息队列的方法
2018/12/27 Python
Python绘制三角函数图(sin\cos\tan)并标注特定范围的例子
2019/12/04 Python
Pytorch十九种损失函数的使用详解
2020/04/29 Python
浅析Python 简单工厂模式和工厂方法模式的优缺点
2020/07/13 Python
全球领先美式家具品牌:Ashley爱室丽家居
2017/08/07 全球购物
大学生个人简历中的自我评价
2013/12/27 职场文书
租房协议书
2014/04/10 职场文书
四年级数学上册教学计划
2015/01/20 职场文书
致运动员的广播稿
2015/08/19 职场文书
初二数学教学反思
2016/02/17 职场文书
创业计划书之闲置物品置换中心
2019/12/25 职场文书
golang操作rocketmq的示例代码
2022/04/06 Golang