python实现多层感知器MLP(基于双月数据集)


Posted in Python onJanuary 18, 2019

本文实例为大家分享了python实现多层感知器MLP的具体代码,供大家参考,具体内容如下

1、加载必要的库,生成数据集

import math
import random
import matplotlib.pyplot as plt
import numpy as np
class moon_data_class(object):
  def __init__(self,N,d,r,w):
    self.N=N
    self.w=w
   
    self.d=d
    self.r=r
  
  
  def sgn(self,x):
    if(x>0):
      return 1;
    else:
      return -1;
    
  def sig(self,x):
    return 1.0/(1+np.exp(x))
  
    
  def dbmoon(self):
    N1 = 10*self.N
    N = self.N
    r = self.r
    w2 = self.w/2
    d = self.d
    done = True
    data = np.empty(0)
    while done:
      #generate Rectangular data
      tmp_x = 2*(r+w2)*(np.random.random([N1, 1])-0.5)
      tmp_y = (r+w2)*np.random.random([N1, 1])
      tmp = np.concatenate((tmp_x, tmp_y), axis=1)
      tmp_ds = np.sqrt(tmp_x*tmp_x + tmp_y*tmp_y)
      #generate double moon data ---upper
      idx = np.logical_and(tmp_ds > (r-w2), tmp_ds < (r+w2))
      idx = (idx.nonzero())[0]
   
      if data.shape[0] == 0:
        data = tmp.take(idx, axis=0)
      else:
        data = np.concatenate((data, tmp.take(idx, axis=0)), axis=0)
      if data.shape[0] >= N:
        done = False
    #print (data)
    db_moon = data[0:N, :]
    #print (db_moon)
    #generate double moon data ----down
    data_t = np.empty([N, 2])
    data_t[:, 0] = data[0:N, 0] + r
    data_t[:, 1] = -data[0:N, 1] - d
    db_moon = np.concatenate((db_moon, data_t), axis=0)
    return db_moon

2、定义激活函数

def rand(a,b):
  return (b-a)* random.random()+a

def sigmoid(x):
  #return np.tanh(-2.0*x)
  return 1.0/(1.0+math.exp(-x))
def sigmoid_derivate(x):
  #return -2.0*(1.0-np.tanh(-2.0*x)*np.tanh(-2.0*x))
  return x*(1-x) #sigmoid函数的导数

3、定义神经网络

class BP_NET(object):
  def __init__(self):
    self.input_n = 0
    self.hidden_n = 0
    self.output_n = 0
    self.input_cells = []
    self.bias_input_n = []
    self.bias_output = []
    self.hidden_cells = []
    self.output_cells = []
    self.input_weights = []
    self.output_weights = []
    
    self.input_correction = []
    self.output_correction = []
  
  def setup(self, ni,nh,no):
    self.input_n = ni+1#输入层+偏置项
    self.hidden_n = nh
    self.output_n = no
    self.input_cells = [1.0]*self.input_n
    self.hidden_cells = [1.0]*self.hidden_n
    self.output_cells = [1.0]*self.output_n
    
    self.input_weights = make_matrix(self.input_n,self.hidden_n)
    self.output_weights = make_matrix(self.hidden_n,self.output_n)
    
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        self.input_weights[i][h] = rand(-0.2,0.2)
    
    for h in range(self.hidden_n):
      for o in range(self.output_n):
        self.output_weights[h][o] = rand(-2.0,2.0)
    
    self.input_correction = make_matrix(self.input_n , self.hidden_n)
    self.output_correction = make_matrix(self.hidden_n,self.output_n)
        
  def predict(self,inputs):
    for i in range(self.input_n-1):
      self.input_cells[i] = inputs[i]
    
    for j in range(self.hidden_n):
      total = 0.0
      for i in range(self.input_n):
        total += self.input_cells[i] * self.input_weights[i][j]
      self.hidden_cells[j] = sigmoid(total)
      
    for k in range(self.output_n):
      total = 0.0
      for j in range(self.hidden_n):
        total+= self.hidden_cells[j]*self.output_weights[j][k]# + self.bias_output[k]
        
      self.output_cells[k] = sigmoid(total)
    return self.output_cells[:]
  
  def back_propagate(self, case,label,learn,correct):
    #计算得到输出output_cells
    self.predict(case)
    output_deltas = [0.0]*self.output_n
    error = 0.0
    #计算误差 = 期望输出-实际输出
    for o in range(self.output_n):
      error = label[o] - self.output_cells[o] #正确结果和预测结果的误差:0,1,-1
      output_deltas[o]= sigmoid_derivate(self.output_cells[o])*error#误差稳定在0~1内
 
    hidden_deltas = [0.0] * self.hidden_n
    for j in range(self.hidden_n):
      error = 0.0
      for k in range(self.output_n):
        error+= output_deltas[k]*self.output_weights[j][k]
      hidden_deltas[j] = sigmoid_derivate(self.hidden_cells[j])*error 

    for h in range(self.hidden_n):
      for o in range(self.output_n):
        change = output_deltas[o]*self.hidden_cells[h]
        #调整权重:上一层每个节点的权重学习*变化+矫正率
        self.output_weights[h][o] += learn*change 
    #更新输入->隐藏层的权重
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        change = hidden_deltas[h]*self.input_cells[i]
        self.input_weights[i][h] += learn*change 
      
      
    error = 0
    for o in range(len(label)):
      for k in range(self.output_n):
        error+= 0.5*(label[o] - self.output_cells[k])**2
      
    return error
    
  def train(self,cases,labels, limit, learn,correct=0.1):

    for i in range(limit):        
      error = 0.0
      # learn = le.arn_speed_start /float(i+1)    
      for j in range(len(cases)):
        case = cases[j]
        label = labels[j] 
             
        error+= self.back_propagate(case, label, learn,correct)
      if((i+1)%500==0):
        print("error:",error)
        
  def test(self): #学习异或

    
    N = 200
    d = -4
    r = 10
    width = 6
    
    data_source = moon_data_class(N, d, r, width)
    data = data_source.dbmoon()
    

    
    # x0 = [1 for x in range(1,401)]
    input_cells = np.array([np.reshape(data[0:2*N, 0], len(data)), np.reshape(data[0:2*N, 1], len(data))]).transpose()
    
    labels_pre = [[1.0] for y in range(1, 201)]
    labels_pos = [[0.0] for y in range(1, 201)]
    labels=labels_pre+labels_pos
    
    self.setup(2,5,1) #初始化神经网络:输入层,隐藏层,输出层元素个数
    self.train(input_cells,labels,2000,0.05,0.1) #可以更改
    
    test_x = []
    test_y = []
    test_p = []
    
    y_p_old = 0
  
    for x in np.arange(-15.,25.,0.1):

      for y in np.arange(-10.,10.,0.1):
        y_p =self.predict(np.array([x, y]))

        if(y_p_old <0.5 and y_p[0] > 0.5):
          test_x.append(x)
          test_y.append(y)
          test_p.append([y_p_old,y_p[0]])
        y_p_old = y_p[0]
    #画决策边界
    plt.plot( test_x, test_y, 'g--')  
    plt.plot(data[0:N, 0], data[0:N, 1], 'r*', data[N:2*N, 0], data[N:2*N, 1], 'b*')
    plt.show()  
          

if __name__ == '__main__':
  nn = BP_NET()
  nn.test()

4、运行结果

python实现多层感知器MLP(基于双月数据集)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python模拟鼠标拖动操作的方法
Mar 11 Python
Pyhton中单行和多行注释的使用方法及规范
Oct 11 Python
python查看微信好友是否删除自己
Dec 19 Python
Python 3.7新功能之dataclass装饰器详解
Apr 21 Python
python使用xlsxwriter实现有向无环图到Excel的转换
Dec 12 Python
Python时间序列缺失值的处理方法(日期缺失填充)
Aug 11 Python
如何为Python终端提供持久性历史记录
Sep 03 Python
Anaconda+vscode+pytorch环境搭建过程详解
May 25 Python
Python 如何测试文件是否存在
Jul 31 Python
Python 常用日期处理 -- calendar 与 dateutil 模块的使用
Sep 02 Python
cookies应对python反爬虫知识点详解
Nov 25 Python
Python 避免字典和元组的多重嵌套问题
Jul 15 Python
基于python实现KNN分类算法
Apr 23 #Python
python实现定时发送qq消息
Jan 18 #Python
如何在Django中设置定时任务的方法示例
Jan 18 #Python
Python设计模式之工厂方法模式实例详解
Jan 18 #Python
Python设计模式之原型模式实例详解
Jan 18 #Python
基于Python实现迪杰斯特拉和弗洛伊德算法
May 27 #Python
Python中logging实例讲解
Jan 17 #Python
You might like
php设计模式 Interpreter(解释器模式)
2011/06/26 PHP
深入解析php之sphinx
2013/05/15 PHP
解析如何修改phpmyadmin中的默认登陆超时时间
2013/06/25 PHP
thinkphp的CURD和查询方式介绍
2013/12/19 PHP
php的memcache类分享(memcache队列)
2014/03/26 PHP
从零开始学YII2框架(六)高级应用程序模板
2014/08/20 PHP
php中使用gd库实现下载网页中所有图片
2015/05/12 PHP
JQuery 选项卡效果(JS与HTML的分离)
2010/04/01 Javascript
jquery在项目中做复选框时遇到的一些问题笔记
2013/11/17 Javascript
js在输入框屏蔽按键,只能键入数字的示例代码
2014/01/03 Javascript
JavaScript判断textarea值是否为空并给出相应提示
2014/09/04 Javascript
jQuery中:first-child选择器用法实例
2014/12/31 Javascript
[原创]Javascript 实现广告后加载 可加载百度谷歌联盟广告
2016/05/11 Javascript
浅谈JavaScript对象的创建方式
2016/06/13 Javascript
javascript数组的定义及操作实例
2019/11/10 Javascript
Vue export import 导入导出的多种方式与区别介绍
2020/02/12 Javascript
Javascript查看大图功能代码实现
2020/05/07 Javascript
基于JavaScript或jQuery实现网站夜间/高亮模式
2020/05/30 jQuery
Python实现动态加载模块、类、函数的方法分析
2017/07/18 Python
python中利用队列asyncio.Queue进行通讯详解
2017/09/10 Python
pytorch 图像中的数据预处理和批标准化实例
2020/01/15 Python
python随机模块random使用方法详解
2020/02/14 Python
如何用python 操作zookeeper
2020/12/28 Python
html5 canvas移动浏览器上实现图片压缩上传
2016/03/11 HTML / CSS
10条PHP编程习惯
2014/05/26 面试题
类如何去实现接口
2013/12/19 面试题
综合办公室个人的自我评价
2013/12/22 职场文书
幼师自我鉴定
2014/02/01 职场文书
办公室主任主任岗位责任制
2014/02/11 职场文书
会计人员演讲稿
2014/09/11 职场文书
党的群众路线教育实践活动个人整改措施材料
2014/11/04 职场文书
2015年医院护理部工作总结
2015/04/23 职场文书
学生乘坐校车安全责任书
2015/05/11 职场文书
公务员处分决定书
2015/06/25 职场文书
创业计划书之熟食店
2019/10/16 职场文书
Python实现机器学习算法的分类
2021/06/03 Python