浅谈Python NLP入门教程


Posted in Python onDecember 25, 2017

正文

本文简要介绍Python自然语言处理(NLP),使用Python的NLTK库。NLTK是Python的自然语言处理工具包,在NLP领域中,最常使用的一个Python库。

什么是NLP?

简单来说,自然语言处理(NLP)就是开发能够理解人类语言的应用程序或服务。

这里讨论一些自然语言处理(NLP)的实际应用例子,如语音识别、语音翻译、理解完整的句子、理解匹配词的同义词,以及生成语法正确完整句子和段落。

这并不是NLP能做的所有事情。

NLP实现

搜索引擎: 比如谷歌,Yahoo等。谷歌搜索引擎知道你是一个技术人员,所以它显示与技术相关的结果;

社交网站推送:比如Facebook News Feed。如果News Feed算法知道你的兴趣是自然语言处理,就会显示相关的广告和帖子。

语音引擎:比如Apple的Siri。

垃圾邮件过滤:如谷歌垃圾邮件过滤器。和普通垃圾邮件过滤不同,它通过了解邮件内容里面的的深层意义,来判断是不是垃圾邮件。

NLP库

下面是一些开源的自然语言处理库(NLP):

  1. Natural language toolkit (NLTK);
  2. Apache OpenNLP;
  3. Stanford NLP suite;
  4. Gate NLP library

其中自然语言工具包(NLTK)是最受欢迎的自然语言处理库(NLP),它是用Python编写的,而且背后有非常强大的社区支持。

NLTK也很容易上手,实际上,它是最简单的自然语言处理(NLP)库。

在这个NLP教程中,我们将使用Python NLTK库。

安装 NLTK

如果您使用的是Windows/Linux/Mac,您可以使用pip安装NLTK:

pip install nltk

打开python终端导入NLTK检查NLTK是否正确安装:

import nltk

如果一切顺利,这意味着您已经成功地安装了NLTK库。首次安装了NLTK,需要通过运行以下代码来安装NLTK扩展包:

import nltk
nltk.download()

这将弹出NLTK 下载窗口来选择需要安装哪些包:

浅谈Python NLP入门教程

您可以安装所有的包,因为它们的大小都很小,所以没有什么问题。

使用Python Tokenize文本

首先,我们将抓取一个web页面内容,然后分析文本了解页面的内容。

我们将使用urllib模块来抓取web页面:

import urllib.request
response = urllib.request.urlopen('http://php.net/')
html = response.read()
print (html)

从打印结果中可以看到,结果包含许多需要清理的HTML标签。

然后BeautifulSoup模块来清洗这样的文字:

from bs4 import BeautifulSoup
import urllib.request
response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
# 这需要安装html5lib模块
text = soup.get_text(strip=True)
print (text)

现在我们从抓取的网页中得到了一个干净的文本。

下一步,将文本转换为tokens,像这样:

from bs4 import BeautifulSoup
import urllib.request
response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
text = soup.get_text(strip=True)
tokens = text.split()
print (tokens)

统计词频

text已经处理完毕了,现在使用Python NLTK统计token的频率分布。

可以通过调用NLTK中的FreqDist()方法实现:

from bs4 import BeautifulSoup
import urllib.request
import nltk

response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
text = soup.get_text(strip=True)
tokens = text.split()
freq = nltk.FreqDist(tokens)
for key,val in freq.items():
  print (str(key) + ':' + str(val))

如果搜索输出结果,可以发现最常见的token是PHP。

您可以调用plot函数做出频率分布图:

freq.plot(20, cumulative=False)
# 需要安装matplotlib库

浅谈Python NLP入门教程

这上面这些单词。比如of,a,an等等,这些词都属于停用词。

一般来说,停用词应该删除,防止它们影响分析结果。

处理停用词

NLTK自带了许多种语言的停用词列表,如果你获取英文停用词:

from nltk.corpus import stopwords
stopwords.words('english')

现在,修改下代码,在绘图之前清除一些无效的token:

clean_tokens = list()
sr = stopwords.words('english')
for token in tokens:
  if token not in sr:
    clean_tokens.append(token)

最终的代码应该是这样的:

from bs4 import BeautifulSoup
import urllib.request
import nltk
from nltk.corpus import stopwords

response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
text = soup.get_text(strip=True)
tokens = text.split()
clean_tokens = list()
sr = stopwords.words('english')
for token in tokens:
  if not token in sr:
    clean_tokens.append(token)
freq = nltk.FreqDist(clean_tokens)
for key,val in freq.items():
  print (str(key) + ':' + str(val))

现在再做一次词频统计图,效果会比之前好些,因为剔除了停用词:

freq.plot(20,cumulative=False)

浅谈Python NLP入门教程

使用NLTK Tokenize文本

在之前我们用split方法将文本分割成tokens,现在我们使用NLTK来Tokenize文本。

文本没有Tokenize之前是无法处理的,所以对文本进行Tokenize非常重要的。token化过程意味着将大的部件分割为小部件。

你可以将段落tokenize成句子,将句子tokenize成单个词,NLTK分别提供了句子tokenizer和单词tokenizer。

假如有这样这段文本:

Hello Adam, how are you? I hope everything is going well. Today is a good day, see you dude.

使用句子tokenizer将文本tokenize成句子:

from nltk.tokenize import sent_tokenize

mytext = "Hello Adam, how are you? I hope everything is going well. Today is a good day, see you dude."
print(sent_tokenize(mytext))

输出如下:

['Hello Adam, how are you?', 'I hope everything is going well.', 'Today is a good day, see you dude.']

这是你可能会想,这也太简单了,不需要使用NLTK的tokenizer都可以,直接使用正则表达式来拆分句子就行,因为每个句子都有标点和空格。

那么再来看下面的文本:

Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude.

这样如果使用标点符号拆分,Hello Mr将会被认为是一个句子,如果使用NLTK:

from nltk.tokenize import sent_tokenize
mytext = "Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude."
print(sent_tokenize(mytext))

输出如下:
['Hello Mr. Adam, how are you?', 'I hope everything is going well.', 'Today is a good day, see you dude.']

这才是正确的拆分。

接下来试试单词tokenizer:

from nltk.tokenize import word_tokenize

mytext = "Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude."
print(word_tokenize(mytext))

输出如下:

['Hello', 'Mr.', 'Adam', ',', 'how', 'are', 'you', '?', 'I', 'hope', 'everything', 'is', 'going', 'well', '.', 'Today', 'is', 'a', 'good', 'day', ',', 'see', 'you', 'dude', '.']

Mr.这个词也没有被分开。NLTK使用的是punkt模块的PunktSentenceTokenizer,它是NLTK.tokenize的一部分。而且这个tokenizer经过训练,可以适用于多种语言。

非英文Tokenize

Tokenize时可以指定语言:

from nltk.tokenize import sent_tokenize

mytext = "Bonjour M. Adam, comment allez-vous? J'espère que tout va bien. Aujourd'hui est un bon jour."
print(sent_tokenize(mytext,"french"))

输出结果如下:

['Bonjour M. Adam, comment allez-vous?', "J'espère que tout va bien.", "Aujourd'hui est un bon jour."]

同义词处理

使用nltk.download()安装界面,其中一个包是WordNet。

WordNet是一个为自然语言处理而建立的数据库。它包括一些同义词组和一些简短的定义。

您可以这样获取某个给定单词的定义和示例:

from nltk.corpus import wordnet

syn = wordnet.synsets("pain")
print(syn[0].definition())
print(syn[0].examples())

输出结果是:

a symptom of some physical hurt or disorder
['the patient developed severe pain and distension']

WordNet包含了很多定义:

from nltk.corpus import wordnet

syn = wordnet.synsets("NLP")
print(syn[0].definition())
syn = wordnet.synsets("Python")
print(syn[0].definition())

结果如下:

the branch of information science that deals with natural language information
large Old World boas

可以像这样使用WordNet来获取同义词:

from nltk.corpus import wordnet
synonyms = []
for syn in wordnet.synsets('Computer'):
  for lemma in syn.lemmas():
    synonyms.append(lemma.name())
print(synonyms)

输出:

['computer', 'computing_machine', 'computing_device', 'data_processor', 'electronic_computer', 'information_processing_system', 'calculator', 'reckoner', 'figurer', 'estimator', 'computer']

反义词处理

也可以用同样的方法得到反义词:

from nltk.corpus import wordnet

antonyms = []
for syn in wordnet.synsets("small"):
  for l in syn.lemmas():
    if l.antonyms():
      antonyms.append(l.antonyms()[0].name())
print(antonyms)

输出:
['large', 'big', 'big']

词干提取

语言形态学和信息检索里,词干提取是去除词缀得到词根的过程,例如working的词干为work。

搜索引擎在索引页面时就会使用这种技术,所以很多人为相同的单词写出不同的版本。

有很多种算法可以避免这种情况,最常见的是波特词干算法。NLTK有一个名为PorterStemmer的类,就是这个算法的实现:

from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
print(stemmer.stem('working'))
print(stemmer.stem('worked'))

输出结果是:

work
work

还有其他的一些词干提取算法,比如 Lancaster词干算法。

非英文词干提取

除了英文之外,SnowballStemmer还支持13种语言。

支持的语言:

from nltk.stem import SnowballStemmer

print(SnowballStemmer.languages)

'danish', 'dutch', 'english', 'finnish', 'french', 'german', 'hungarian', 'italian', 'norwegian', 'porter', 'portuguese', 'romanian', 'russian', 'spanish', 'swedish'

你可以使用SnowballStemmer类的stem函数来提取像这样的非英文单词:

from nltk.stem import SnowballStemmer
french_stemmer = SnowballStemmer('french')
print(french_stemmer.stem("French word"))

单词变体还原

单词变体还原类似于词干,但不同的是,变体还原的结果是一个真实的单词。不同于词干,当你试图提取某些词时,它会产生类似的词:

from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
print(stemmer.stem('increases'))

结果:

increas

现在,如果用NLTK的WordNet来对同一个单词进行变体还原,才是正确的结果:

from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('increases'))

结果:

increase

结果可能会是一个同义词或同一个意思的不同单词。

有时候将一个单词做变体还原时,总是得到相同的词。

这是因为语言的默认部分是名词。要得到动词,可以这样指定:

from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('playing', pos="v"))

结果:
play

实际上,这也是一种很好的文本压缩方式,最终得到文本只有原先的50%到60%。

结果还可以是动词(v)、名词(n)、形容词(a)或副词(r):

from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('playing', pos="v"))
print(lemmatizer.lemmatize('playing', pos="n"))
print(lemmatizer.lemmatize('playing', pos="a"))
print(lemmatizer.lemmatize('playing', pos="r"))

输出:
play
playing
playing
playing

词干和变体的区别

通过下面例子来观察:

from nltk.stem import WordNetLemmatizer
from nltk.stem import PorterStemmer

stemmer = PorterStemmer()
lemmatizer = WordNetLemmatizer()
print(stemmer.stem('stones'))
print(stemmer.stem('speaking'))
print(stemmer.stem('bedroom'))
print(stemmer.stem('jokes'))
print(stemmer.stem('lisa'))
print(stemmer.stem('purple'))
print('----------------------')
print(lemmatizer.lemmatize('stones'))
print(lemmatizer.lemmatize('speaking'))
print(lemmatizer.lemmatize('bedroom'))
print(lemmatizer.lemmatize('jokes'))
print(lemmatizer.lemmatize('lisa'))
print(lemmatizer.lemmatize('purple'))

输出:
stone
speak
bedroom
joke
lisa
purpl
---------------------
stone
speaking
bedroom
joke
lisa
purple

词干提取不会考虑语境,这也是为什么词干提取比变体还原快且准确度低的原因。

个人认为,变体还原比词干提取更好。单词变体还原返回一个真实的单词,即使它不是同一个单词,也是同义词,但至少它是一个真实存在的单词。

如果你只关心速度,不在意准确度,这时你可以选用词干提取。

在此NLP教程中讨论的所有步骤都只是文本预处理。在以后的文章中,将会使用Python NLTK来实现文本分析。

我已经尽量使文章通俗易懂。希望能对你有所帮助。也希望大家多多支持三水点靠木。

Python 相关文章推荐
python ip正则式
May 07 Python
Python os模块中的isfile()和isdir()函数均返回false问题解决方法
Feb 04 Python
Python中设置变量作为默认值时容易遇到的错误
Apr 03 Python
Django原生sql也能使用Paginator分页的示例代码
Nov 15 Python
深入理解Python单元测试unittest的使用示例
Nov 18 Python
使用Python爬了4400条淘宝商品数据,竟发现了这些“潜规则”
Mar 23 Python
pandas多级分组实现排序的方法
Apr 20 Python
Python把对应格式的csv文件转换成字典类型存储脚本的方法
Feb 12 Python
关于numpy数组轴的使用详解
Dec 05 Python
Pytorch释放显存占用方式
Jan 13 Python
Python3使用腾讯云文字识别(腾讯OCR)提取图片中的文字内容实例详解
Feb 18 Python
python 爬虫 实现增量去重和定时爬取实例
Feb 28 Python
Python图形绘制操作之正弦曲线实现方法分析
Dec 25 #Python
关于Django显示时间你应该知道的一些问题
Dec 25 #Python
今天 平安夜 Python 送你一顶圣诞帽 @微信官方
Dec 25 #Python
python回调函数中使用多线程的方法
Dec 25 #Python
python创建列表和向列表添加元素的实现方法
Dec 25 #Python
Python中装饰器高级用法详解
Dec 25 #Python
Python中最大最小赋值小技巧(分享)
Dec 23 #Python
You might like
php注销代码(session注销)
2012/05/31 PHP
php通过exif_read_data函数获取图片的exif信息
2015/05/21 PHP
php如何控制用户对图片的访问 PHP禁止图片盗链
2016/03/25 PHP
PHP数学运算与数据处理实例分析
2016/04/01 PHP
PHP基于迭代实现文件夹复制、删除、查看大小等操作的方法
2017/08/11 PHP
tp5修改(实现即点即改)
2019/10/18 PHP
laravel admin实现分类树/模型树的示例代码
2020/06/10 PHP
js修改地址栏URL参数解决url参数问题
2012/12/15 Javascript
setTimeout和setInterval的深入理解
2013/11/08 Javascript
Jquery实现自定义弹窗示例
2014/03/12 Javascript
jQuery中:radio选择器用法实例
2015/01/03 Javascript
html的DOM中document对象anchors集合用法实例
2015/01/21 Javascript
js正则表达式惰性匹配和贪婪匹配用法分析
2016/12/26 Javascript
详解在AngularJS的controller外部直接获取$scope
2017/06/02 Javascript
JS实现自定义状态栏动画文字效果示例
2017/10/12 Javascript
微信小程序scroll-view组件实现滚动动画
2018/01/31 Javascript
Vue 基于 vuedraggable 实现选中、拖拽、排序效果
2020/05/18 Javascript
Vue+ElementUI 中级联选择器Bug问题的解决
2020/07/31 Javascript
JS实现简易贪吃蛇游戏
2020/08/24 Javascript
[54:28]EG vs OG 2019国际邀请赛小组赛 BO2 第一场 8.16
2019/08/18 DOTA
python中Flask框架简单入门实例
2015/03/21 Python
Python标准库之collections包的使用教程
2017/04/27 Python
用python实现对比两张图片的不同
2018/02/05 Python
Python3使用turtle绘制超立方体图形示例
2018/06/19 Python
浅析python参数的知识点
2018/12/10 Python
Python实现微信小程序支付功能
2019/07/25 Python
Pandas将列表(List)转换为数据框(Dataframe)
2020/04/24 Python
利用css3制作3D样式按钮实现代码
2013/03/18 HTML / CSS
如何在Canvas中添加事件的方法示例
2019/05/21 HTML / CSS
成品库仓管员岗位职责
2014/04/06 职场文书
公司承诺书怎么写
2014/05/24 职场文书
物业总经理助理岗位职责
2014/06/29 职场文书
劳动模范获奖感言
2015/07/31 职场文书
2015年教师节广播稿
2015/08/19 职场文书
大学军训口号大全
2015/12/24 职场文书
该怎么书写道歉信?
2019/07/03 职场文书