python实现的DES加密算法和3DES加密算法实例


Posted in Python onJune 03, 2015

本文实例讲述了python实现的DES加密算法和3DES加密算法。分享给大家供大家参考。具体实现方法如下:

#############################################################################
#         Documentation          #
#############################################################################
# Author:  Todd Whiteman
# Date:   16th March, 2009
# Verion:  2.0.0
# License: Public Domain - free to do as you wish
# Homepage: http://twhiteman.netfirms.com/des.html
#
# This is a pure python implementation of the DES encryption algorithm.
# It's pure python to avoid portability issues, since most DES 
# implementations are programmed in C (for performance reasons).
#
# Triple DES class is also implemented, utilising the DES base. Triple DES
# is either DES-EDE3 with a 24 byte key, or DES-EDE2 with a 16 byte key.
#
# See the README.txt that should come with this python module for the
# implementation methods used.
#
# Thanks to:
# * David Broadwell for ideas, comments and suggestions.
# * Mario Wolff for pointing out and debugging some triple des CBC errors.
# * Santiago Palladino for providing the PKCS5 padding technique.
# * Shaya for correcting the PAD_PKCS5 triple des CBC errors.
#
"""A pure python implementation of the DES and TRIPLE DES encryption algorithms.
Class initialization
--------------------
pyDes.des(key, [mode], [IV], [pad], [padmode])
pyDes.triple_des(key, [mode], [IV], [pad], [padmode])
key   -> Bytes containing the encryption key. 8 bytes for DES, 16 or 24 bytes
    for Triple DES
mode  -> Optional argument for encryption type, can be either
    pyDes.ECB (Electronic Code Book) or pyDes.CBC (Cypher Block Chaining)
IV   -> Optional Initial Value bytes, must be supplied if using CBC mode.
    Length must be 8 bytes.
pad   -> Optional argument, set the pad character (PAD_NORMAL) to use during
    all encrypt/decrpt operations done with this instance.
padmode -> Optional argument, set the padding mode (PAD_NORMAL or PAD_PKCS5)
    to use during all encrypt/decrpt operations done with this instance.
I recommend to use PAD_PKCS5 padding, as then you never need to worry about any
padding issues, as the padding can be removed unambiguously upon decrypting
data that was encrypted using PAD_PKCS5 padmode.
Common methods
--------------
encrypt(data, [pad], [padmode])
decrypt(data, [pad], [padmode])
data  -> Bytes to be encrypted/decrypted
pad   -> Optional argument. Only when using padmode of PAD_NORMAL. For
    encryption, adds this characters to the end of the data block when
    data is not a multiple of 8 bytes. For decryption, will remove the
    trailing characters that match this pad character from the last 8
    bytes of the unencrypted data block.
padmode -> Optional argument, set the padding mode, must be one of PAD_NORMAL
    or PAD_PKCS5). Defaults to PAD_NORMAL.

Example
-------
from pyDes import *
data = "Please encrypt my data"
k = des("DESCRYPT", CBC, "\0\0\0\0\0\0\0\0", pad=None, padmode=PAD_PKCS5)
# For Python3, you'll need to use bytes, i.e.:
#  data = b"Please encrypt my data"
#  k = des(b"DESCRYPT", CBC, b"\0\0\0\0\0\0\0\0", pad=None, padmode=PAD_PKCS5)
d = k.encrypt(data)
print "Encrypted: %r" % d
print "Decrypted: %r" % k.decrypt(d)
assert k.decrypt(d, padmode=PAD_PKCS5) == data

See the module source (pyDes.py) for more examples of use.
You can also run the pyDes.py file without and arguments to see a simple test.
Note: This code was not written for high-end systems needing a fast
   implementation, but rather a handy portable solution with small usage.
"""
import sys
# _pythonMajorVersion is used to handle Python2 and Python3 differences.
_pythonMajorVersion = sys.version_info[0]
# Modes of crypting / cyphering
ECB =  0
CBC =  1
# Modes of padding
PAD_NORMAL = 1
PAD_PKCS5 = 2
# PAD_PKCS5: is a method that will unambiguously remove all padding
#      characters after decryption, when originally encrypted with
#      this padding mode.
# For a good description of the PKCS5 padding technique, see:
# http://www.faqs.org/rfcs/rfc1423.html
# The base class shared by des and triple des.
class _baseDes(object):
  def __init__(self, mode=ECB, IV=None, pad=None, padmode=PAD_NORMAL):
    if IV:
      IV = self._guardAgainstUnicode(IV)
    if pad:
      pad = self._guardAgainstUnicode(pad)
    self.block_size = 8
    # Sanity checking of arguments.
    if pad and padmode == PAD_PKCS5:
      raise ValueError("Cannot use a pad character with PAD_PKCS5")
    if IV and len(IV) != self.block_size:
      raise ValueError("Invalid Initial Value (IV), must be a multiple of " + str(self.block_size) + " bytes")
    # Set the passed in variables
    self._mode = mode
    self._iv = IV
    self._padding = pad
    self._padmode = padmode
  def getKey(self):
    """getKey() -> bytes"""
    return self.__key
  def setKey(self, key):
    """Will set the crypting key for this object."""
    key = self._guardAgainstUnicode(key)
    self.__key = key
  def getMode(self):
    """getMode() -> pyDes.ECB or pyDes.CBC"""
    return self._mode
  def setMode(self, mode):
    """Sets the type of crypting mode, pyDes.ECB or pyDes.CBC"""
    self._mode = mode
  def getPadding(self):
    """getPadding() -> bytes of length 1. Padding character."""
    return self._padding
  def setPadding(self, pad):
    """setPadding() -> bytes of length 1. Padding character."""
    if pad is not None:
      pad = self._guardAgainstUnicode(pad)
    self._padding = pad
  def getPadMode(self):
    """getPadMode() -> pyDes.PAD_NORMAL or pyDes.PAD_PKCS5"""
    return self._padmode
  def setPadMode(self, mode):
    """Sets the type of padding mode, pyDes.PAD_NORMAL or pyDes.PAD_PKCS5"""
    self._padmode = mode
  def getIV(self):
    """getIV() -> bytes"""
    return self._iv
  def setIV(self, IV):
    """Will set the Initial Value, used in conjunction with CBC mode"""
    if not IV or len(IV) != self.block_size:
      raise ValueError("Invalid Initial Value (IV), must be a multiple of " + str(self.block_size) + " bytes")
    IV = self._guardAgainstUnicode(IV)
    self._iv = IV
  def _padData(self, data, pad, padmode):
    # Pad data depending on the mode
    if padmode is None:
      # Get the default padding mode.
      padmode = self.getPadMode()
    if pad and padmode == PAD_PKCS5:
      raise ValueError("Cannot use a pad character with PAD_PKCS5")
    if padmode == PAD_NORMAL:
      if len(data) % self.block_size == 0:
        # No padding required.
        return data
      if not pad:
        # Get the default padding.
        pad = self.getPadding()
      if not pad:
        raise ValueError("Data must be a multiple of " + str(self.block_size) + " bytes in length. Use padmode=PAD_PKCS5 or set the pad character.")
      data += (self.block_size - (len(data) % self.block_size)) * pad
    elif padmode == PAD_PKCS5:
      pad_len = 8 - (len(data) % self.block_size)
      if _pythonMajorVersion < 3:
        data += pad_len * chr(pad_len)
      else:
        data += bytes([pad_len] * pad_len)
    return data
  def _unpadData(self, data, pad, padmode):
    # Unpad data depending on the mode.
    if not data:
      return data
    if pad and padmode == PAD_PKCS5:
      raise ValueError("Cannot use a pad character with PAD_PKCS5")
    if padmode is None:
      # Get the default padding mode.
      padmode = self.getPadMode()
    if padmode == PAD_NORMAL:
      if not pad:
        # Get the default padding.
        pad = self.getPadding()
      if pad:
        data = data[:-self.block_size] + \
            data[-self.block_size:].rstrip(pad)
    elif padmode == PAD_PKCS5:
      if _pythonMajorVersion < 3:
        pad_len = ord(data[-1])
      else:
        pad_len = data[-1]
      data = data[:-pad_len]
    return data
  def _guardAgainstUnicode(self, data):
    # Only accept byte strings or ascii unicode values, otherwise
    # there is no way to correctly decode the data into bytes.
    if _pythonMajorVersion < 3:
      if isinstance(data, unicode):
        raise ValueError("pyDes can only work with bytes, not Unicode strings.")
    else:
      if isinstance(data, str):
        # Only accept ascii unicode values.
        try:
          return data.encode('ascii')
        except UnicodeEncodeError:
          pass
        raise ValueError("pyDes can only work with encoded strings, not Unicode.")
    return data
#############################################################################
#           DES            #
#############################################################################
class des(_baseDes):
  """DES encryption/decrytpion class
  Supports ECB (Electronic Code Book) and CBC (Cypher Block Chaining) modes.
  pyDes.des(key,[mode], [IV])
  key -> Bytes containing the encryption key, must be exactly 8 bytes
  mode -> Optional argument for encryption type, can be either pyDes.ECB
    (Electronic Code Book), pyDes.CBC (Cypher Block Chaining)
  IV  -> Optional Initial Value bytes, must be supplied if using CBC mode.
    Must be 8 bytes in length.
  pad -> Optional argument, set the pad character (PAD_NORMAL) to use
    during all encrypt/decrpt operations done with this instance.
  padmode -> Optional argument, set the padding mode (PAD_NORMAL or
    PAD_PKCS5) to use during all encrypt/decrpt operations done
    with this instance.
  """

  # Permutation and translation tables for DES
  __pc1 = [56, 48, 40, 32, 24, 16, 8,
, 57, 49, 41, 33, 25, 17,
, 1, 58, 50, 42, 34, 26,
, 10, 2, 59, 51, 43, 35,
, 54, 46, 38, 30, 22, 14,
, 61, 53, 45, 37, 29, 21,
, 5, 60, 52, 44, 36, 28,
, 12, 4, 27, 19, 11, 3
  ]
  # number left rotations of pc1
  __left_rotations = [
, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
  ]
  # permuted choice key (table 2)
  __pc2 = [
, 16, 10, 23, 0, 4,
, 27, 14, 5, 20, 9,
, 18, 11, 3, 25, 7,
, 6, 26, 19, 12, 1,
, 51, 30, 36, 46, 54,
, 39, 50, 44, 32, 47,
, 48, 38, 55, 33, 52,
, 41, 49, 35, 28, 31
  ]
  # initial permutation IP
  __ip = [57, 49, 41, 33, 25, 17, 9, 1,
, 51, 43, 35, 27, 19, 11, 3,
, 53, 45, 37, 29, 21, 13, 5,
, 55, 47, 39, 31, 23, 15, 7,
, 48, 40, 32, 24, 16, 8, 0,
, 50, 42, 34, 26, 18, 10, 2,
, 52, 44, 36, 28, 20, 12, 4,
, 54, 46, 38, 30, 22, 14, 6
  ]
  # Expansion table for turning 32 bit blocks into 48 bits
  __expansion_table = [
, 0, 1, 2, 3, 4,
, 4, 5, 6, 7, 8,
, 8, 9, 10, 11, 12,
, 12, 13, 14, 15, 16,
, 16, 17, 18, 19, 20,
, 20, 21, 22, 23, 24,
, 24, 25, 26, 27, 28,
, 28, 29, 30, 31, 0
  ]
  # The (in)famous S-boxes
  __sbox = [
    # S1
    [14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13],
    # S2
    [15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9],
    # S3
    [10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12],
    # S4
    [7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14],
    # S5
    [2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3],
    # S6
    [12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13],
    # S7
    [4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12],
    # S8
    [13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11],
  ]

  # 32-bit permutation function P used on the output of the S-boxes
  __p = [
, 6, 19, 20, 28, 11,
, 16, 0, 14, 22, 25,
, 17, 30, 9, 1, 7,
,13, 31, 26, 2, 8,
, 12, 29, 5, 21, 10,
, 24
  ]
  # final permutation IP^-1
  __fp = [
, 7, 47, 15, 55, 23, 63, 31,
, 6, 46, 14, 54, 22, 62, 30,
, 5, 45, 13, 53, 21, 61, 29,
, 4, 44, 12, 52, 20, 60, 28,
, 3, 43, 11, 51, 19, 59, 27,
, 2, 42, 10, 50, 18, 58, 26,
, 1, 41, 9, 49, 17, 57, 25,
, 0, 40, 8, 48, 16, 56, 24
  ]
  # Type of crypting being done
  ENCRYPT =  0x00
  DECRYPT =  0x01
  # Initialisation
  def __init__(self, key, mode=ECB, IV=None, pad=None, padmode=PAD_NORMAL):
    # Sanity checking of arguments.
    if len(key) != 8:
      raise ValueError("Invalid DES key size. Key must be exactly 8 bytes long.")
    _baseDes.__init__(self, mode, IV, pad, padmode)
    self.key_size = 8
    self.L = []
    self.R = []
    self.Kn = [ [0] * 48 ] * 16  # 16 48-bit keys (K1 - K16)
    self.final = []
    self.setKey(key)
  def setKey(self, key):
    """Will set the crypting key for this object. Must be 8 bytes."""
    _baseDes.setKey(self, key)
    self.__create_sub_keys()
  def __String_to_BitList(self, data):
    """Turn the string data, into a list of bits (1, 0)'s"""
    if _pythonMajorVersion < 3:
      # Turn the strings into integers. Python 3 uses a bytes
      # class, which already has this behaviour.
      data = [ord(c) for c in data]
    l = len(data) * 8
    result = [0] * l
    pos = 0
    for ch in data:
      i = 7
      while i >= 0:
        if ch & (1 << i) != 0:
          result[pos] = 1
        else:
          result[pos] = 0
        pos += 1
        i -= 1
    return result
  def __BitList_to_String(self, data):
    """Turn the list of bits -> data, into a string"""
    result = []
    pos = 0
    c = 0
    while pos < len(data):
      c += data[pos] << (7 - (pos % 8))
      if (pos % 8) == 7:
        result.append(c)
        c = 0
      pos += 1
    if _pythonMajorVersion < 3:
      return ''.join([ chr(c) for c in result ])
    else:
      return bytes(result)
  def __permutate(self, table, block):
    """Permutate this block with the specified table"""
    return list(map(lambda x: block[x], table))
  # Transform the secret key, so that it is ready for data processing
  # Create the 16 subkeys, K[1] - K[16]
  def __create_sub_keys(self):
    """Create the 16 subkeys K[1] to K[16] from the given key"""
    key = self.__permutate(des.__pc1, self.__String_to_BitList(self.getKey()))
    i = 0
    # Split into Left and Right sections
    self.L = key[:28]
    self.R = key[28:]
    while i < 16:
      j = 0
      # Perform circular left shifts
      while j < des.__left_rotations[i]:
        self.L.append(self.L[0])
        del self.L[0]
        self.R.append(self.R[0])
        del self.R[0]
        j += 1
      # Create one of the 16 subkeys through pc2 permutation
      self.Kn[i] = self.__permutate(des.__pc2, self.L + self.R)
      i += 1
  # Main part of the encryption algorithm, the number cruncher :)
  def __des_crypt(self, block, crypt_type):
    """Crypt the block of data through DES bit-manipulation"""
    block = self.__permutate(des.__ip, block)
    self.L = block[:32]
    self.R = block[32:]
    # Encryption starts from Kn[1] through to Kn[16]
    if crypt_type == des.ENCRYPT:
      iteration = 0
      iteration_adjustment = 1
    # Decryption starts from Kn[16] down to Kn[1]
    else:
      iteration = 15
      iteration_adjustment = -1
    i = 0
    while i < 16:
      # Make a copy of R[i-1], this will later become L[i]
      tempR = self.R[:]
      # Permutate R[i - 1] to start creating R[i]
      self.R = self.__permutate(des.__expansion_table, self.R)
      # Exclusive or R[i - 1] with K[i], create B[1] to B[8] whilst here
      self.R = list(map(lambda x, y: x ^ y, self.R, self.Kn[iteration]))
      B = [self.R[:6], self.R[6:12], self.R[12:18], self.R[18:24], self.R[24:30], self.R[30:36], self.R[36:42], self.R[42:]]
      # Optimization: Replaced below commented code with above
      #j = 0
      #B = []
      #while j < len(self.R):
      #  self.R[j] = self.R[j] ^ self.Kn[iteration][j]
      #  j += 1
      #  if j % 6 == 0:
      #    B.append(self.R[j-6:j])
      # Permutate B[1] to B[8] using the S-Boxes
      j = 0
      Bn = [0] * 32
      pos = 0
      while j < 8:
        # Work out the offsets
        m = (B[j][0] << 1) + B[j][5]
        n = (B[j][1] << 3) + (B[j][2] << 2) + (B[j][3] << 1) + B[j][4]
        # Find the permutation value
        v = des.__sbox[j][(m << 4) + n]
        # Turn value into bits, add it to result: Bn
        Bn[pos] = (v & 8) >> 3
        Bn[pos + 1] = (v & 4) >> 2
        Bn[pos + 2] = (v & 2) >> 1
        Bn[pos + 3] = v & 1
        pos += 4
        j += 1
      # Permutate the concatination of B[1] to B[8] (Bn)
      self.R = self.__permutate(des.__p, Bn)
      # Xor with L[i - 1]
      self.R = list(map(lambda x, y: x ^ y, self.R, self.L))
      # Optimization: This now replaces the below commented code
      #j = 0
      #while j < len(self.R):
      #  self.R[j] = self.R[j] ^ self.L[j]
      #  j += 1
      # L[i] becomes R[i - 1]
      self.L = tempR
      i += 1
      iteration += iteration_adjustment
    # Final permutation of R[16]L[16]
    self.final = self.__permutate(des.__fp, self.R + self.L)
    return self.final

  # Data to be encrypted/decrypted
  def crypt(self, data, crypt_type):
    """Crypt the data in blocks, running it through des_crypt()"""
    # Error check the data
    if not data:
      return ''
    if len(data) % self.block_size != 0:
      if crypt_type == des.DECRYPT: # Decryption must work on 8 byte blocks
        raise ValueError("Invalid data length, data must be a multiple of " + str(self.block_size) + " bytes\n.")
      if not self.getPadding():
        raise ValueError("Invalid data length, data must be a multiple of " + str(self.block_size) + " bytes\n. Try setting the optional padding character")
      else:
        data += (self.block_size - (len(data) % self.block_size)) * self.getPadding()
      # print "Len of data: %f" % (len(data) / self.block_size)
    if self.getMode() == CBC:
      if self.getIV():
        iv = self.__String_to_BitList(self.getIV())
      else:
        raise ValueError("For CBC mode, you must supply the Initial Value (IV) for ciphering")
    # Split the data into blocks, crypting each one seperately
    i = 0
    dict = {}
    result = []
    #cached = 0
    #lines = 0
    while i < len(data):
      # Test code for caching encryption results
      #lines += 1
      #if dict.has_key(data[i:i+8]):
        #print "Cached result for: %s" % data[i:i+8]
      #  cached += 1
      #  result.append(dict[data[i:i+8]])
      #  i += 8
      #  continue
      block = self.__String_to_BitList(data[i:i+8])
      # Xor with IV if using CBC mode
      if self.getMode() == CBC:
        if crypt_type == des.ENCRYPT:
          block = list(map(lambda x, y: x ^ y, block, iv))
          #j = 0
          #while j < len(block):
          #  block[j] = block[j] ^ iv[j]
          #  j += 1
        processed_block = self.__des_crypt(block, crypt_type)
        if crypt_type == des.DECRYPT:
          processed_block = list(map(lambda x, y: x ^ y, processed_block, iv))
          #j = 0
          #while j < len(processed_block):
          #  processed_block[j] = processed_block[j] ^ iv[j]
          #  j += 1
          iv = block
        else:
          iv = processed_block
      else:
        processed_block = self.__des_crypt(block, crypt_type)

      # Add the resulting crypted block to our list
      #d = self.__BitList_to_String(processed_block)
      #result.append(d)
      result.append(self.__BitList_to_String(processed_block))
      #dict[data[i:i+8]] = d
      i += 8
    # print "Lines: %d, cached: %d" % (lines, cached)
    # Return the full crypted string
    if _pythonMajorVersion < 3:
      return ''.join(result)
    else:
      return bytes.fromhex('').join(result)
  def encrypt(self, data, pad=None, padmode=None):
    """encrypt(data, [pad], [padmode]) -> bytes
    data : Bytes to be encrypted
    pad : Optional argument for encryption padding. Must only be one byte
    padmode : Optional argument for overriding the padding mode.
    The data must be a multiple of 8 bytes and will be encrypted
    with the already specified key. Data does not have to be a
    multiple of 8 bytes if the padding character is supplied, or
    the padmode is set to PAD_PKCS5, as bytes will then added to
    ensure the be padded data is a multiple of 8 bytes.
    """
    data = self._guardAgainstUnicode(data)
    if pad is not None:
      pad = self._guardAgainstUnicode(pad)
    data = self._padData(data, pad, padmode)
    return self.crypt(data, des.ENCRYPT)
  def decrypt(self, data, pad=None, padmode=None):
    """decrypt(data, [pad], [padmode]) -> bytes
    data : Bytes to be encrypted
    pad : Optional argument for decryption padding. Must only be one byte
    padmode : Optional argument for overriding the padding mode.
    The data must be a multiple of 8 bytes and will be decrypted
    with the already specified key. In PAD_NORMAL mode, if the
    optional padding character is supplied, then the un-encrypted
    data will have the padding characters removed from the end of
    the bytes. This pad removal only occurs on the last 8 bytes of
    the data (last data block). In PAD_PKCS5 mode, the special
    padding end markers will be removed from the data after decrypting.
    """
    data = self._guardAgainstUnicode(data)
    if pad is not None:
      pad = self._guardAgainstUnicode(pad)
    data = self.crypt(data, des.DECRYPT)
    return self._unpadData(data, pad, padmode)

#############################################################################
#         Triple DES          #
#############################################################################
class triple_des(_baseDes):
  """Triple DES encryption/decrytpion class
  This algorithm uses the DES-EDE3 (when a 24 byte key is supplied) or
  the DES-EDE2 (when a 16 byte key is supplied) encryption methods.
  Supports ECB (Electronic Code Book) and CBC (Cypher Block Chaining) modes.
  pyDes.des(key, [mode], [IV])
  key -> Bytes containing the encryption key, must be either 16 or
 bytes long
  mode -> Optional argument for encryption type, can be either pyDes.ECB
    (Electronic Code Book), pyDes.CBC (Cypher Block Chaining)
  IV  -> Optional Initial Value bytes, must be supplied if using CBC mode.
    Must be 8 bytes in length.
  pad -> Optional argument, set the pad character (PAD_NORMAL) to use
    during all encrypt/decrpt operations done with this instance.
  padmode -> Optional argument, set the padding mode (PAD_NORMAL or
    PAD_PKCS5) to use during all encrypt/decrpt operations done
    with this instance.
  """
  def __init__(self, key, mode=ECB, IV=None, pad=None, padmode=PAD_NORMAL):
    _baseDes.__init__(self, mode, IV, pad, padmode)
    self.setKey(key)
  def setKey(self, key):
    """Will set the crypting key for this object. Either 16 or 24 bytes long."""
    self.key_size = 24 # Use DES-EDE3 mode
    if len(key) != self.key_size:
      if len(key) == 16: # Use DES-EDE2 mode
        self.key_size = 16
      else:
        raise ValueError("Invalid triple DES key size. Key must be either 16 or 24 bytes long")
    if self.getMode() == CBC:
      if not self.getIV():
        # Use the first 8 bytes of the key
        self._iv = key[:self.block_size]
      if len(self.getIV()) != self.block_size:
        raise ValueError("Invalid IV, must be 8 bytes in length")
    self.__key1 = des(key[:8], self._mode, self._iv,
         self._padding, self._padmode)
    self.__key2 = des(key[8:16], self._mode, self._iv,
         self._padding, self._padmode)
    if self.key_size == 16:
      self.__key3 = self.__key1
    else:
      self.__key3 = des(key[16:], self._mode, self._iv,
           self._padding, self._padmode)
    _baseDes.setKey(self, key)
  # Override setter methods to work on all 3 keys.
  def setMode(self, mode):
    """Sets the type of crypting mode, pyDes.ECB or pyDes.CBC"""
    _baseDes.setMode(self, mode)
    for key in (self.__key1, self.__key2, self.__key3):
      key.setMode(mode)
  def setPadding(self, pad):
    """setPadding() -> bytes of length 1. Padding character."""
    _baseDes.setPadding(self, pad)
    for key in (self.__key1, self.__key2, self.__key3):
      key.setPadding(pad)
  def setPadMode(self, mode):
    """Sets the type of padding mode, pyDes.PAD_NORMAL or pyDes.PAD_PKCS5"""
    _baseDes.setPadMode(self, mode)
    for key in (self.__key1, self.__key2, self.__key3):
      key.setPadMode(mode)
  def setIV(self, IV):
    """Will set the Initial Value, used in conjunction with CBC mode"""
    _baseDes.setIV(self, IV)
    for key in (self.__key1, self.__key2, self.__key3):
      key.setIV(IV)
  def encrypt(self, data, pad=None, padmode=None):
    """encrypt(data, [pad], [padmode]) -> bytes
    data : bytes to be encrypted
    pad : Optional argument for encryption padding. Must only be one byte
    padmode : Optional argument for overriding the padding mode.
    The data must be a multiple of 8 bytes and will be encrypted
    with the already specified key. Data does not have to be a
    multiple of 8 bytes if the padding character is supplied, or
    the padmode is set to PAD_PKCS5, as bytes will then added to
    ensure the be padded data is a multiple of 8 bytes.
    """
    ENCRYPT = des.ENCRYPT
    DECRYPT = des.DECRYPT
    data = self._guardAgainstUnicode(data)
    if pad is not None:
      pad = self._guardAgainstUnicode(pad)
    # Pad the data accordingly.
    data = self._padData(data, pad, padmode)
    if self.getMode() == CBC:
      self.__key1.setIV(self.getIV())
      self.__key2.setIV(self.getIV())
      self.__key3.setIV(self.getIV())
      i = 0
      result = []
      while i < len(data):
        block = self.__key1.crypt(data[i:i+8], ENCRYPT)
        block = self.__key2.crypt(block, DECRYPT)
        block = self.__key3.crypt(block, ENCRYPT)
        self.__key1.setIV(block)
        self.__key2.setIV(block)
        self.__key3.setIV(block)
        result.append(block)
        i += 8
      if _pythonMajorVersion < 3:
        return ''.join(result)
      else:
        return bytes.fromhex('').join(result)
    else:
      data = self.__key1.crypt(data, ENCRYPT)
      data = self.__key2.crypt(data, DECRYPT)
      return self.__key3.crypt(data, ENCRYPT)
  def decrypt(self, data, pad=None, padmode=None):
    """decrypt(data, [pad], [padmode]) -> bytes
    data : bytes to be encrypted
    pad : Optional argument for decryption padding. Must only be one byte
    padmode : Optional argument for overriding the padding mode.
    The data must be a multiple of 8 bytes and will be decrypted
    with the already specified key. In PAD_NORMAL mode, if the
    optional padding character is supplied, then the un-encrypted
    data will have the padding characters removed from the end of
    the bytes. This pad removal only occurs on the last 8 bytes of
    the data (last data block). In PAD_PKCS5 mode, the special
    padding end markers will be removed from the data after
    decrypting, no pad character is required for PAD_PKCS5.
    """
    ENCRYPT = des.ENCRYPT
    DECRYPT = des.DECRYPT
    data = self._guardAgainstUnicode(data)
    if pad is not None:
      pad = self._guardAgainstUnicode(pad)
    if self.getMode() == CBC:
      self.__key1.setIV(self.getIV())
      self.__key2.setIV(self.getIV())
      self.__key3.setIV(self.getIV())
      i = 0
      result = []
      while i < len(data):
        iv = data[i:i+8]
        block = self.__key3.crypt(iv,  DECRYPT)
        block = self.__key2.crypt(block, ENCRYPT)
        block = self.__key1.crypt(block, DECRYPT)
        self.__key1.setIV(iv)
        self.__key2.setIV(iv)
        self.__key3.setIV(iv)
        result.append(block)
        i += 8
      if _pythonMajorVersion < 3:
        data = ''.join(result)
      else:
        data = bytes.fromhex('').join(result)
    else:
      data = self.__key3.crypt(data, DECRYPT)
      data = self.__key2.crypt(data, ENCRYPT)
      data = self.__key1.crypt(data, DECRYPT)
    return self._unpadData(data, pad, padmode)

希望本文所述对大家的Python程序设计有所帮助。

Python 相关文章推荐
python解析xml文件实例分享
Dec 04 Python
Python实现的监测服务器硬盘使用率脚本分享
Nov 07 Python
Python pickle模块用法实例分析
May 27 Python
对python列表里的字典元素去重方法详解
Jan 21 Python
python基础知识(一)变量与简单数据类型详解
Apr 17 Python
python调用并链接MATLAB脚本详解
Jul 05 Python
Python GUI自动化实现绕过验证码登录
Jan 10 Python
Python获取二维数组的行列数的2种方法
Feb 11 Python
python logging 日志的级别调整方式
Feb 21 Python
Python之关于类变量的两种赋值区别详解
Mar 12 Python
基于SQLAlchemy实现操作MySQL并执行原生sql语句
Jun 10 Python
Python爬虫分析微博热搜关键词的实现代码
Feb 22 Python
python获取各操作系统硬件信息的方法
Jun 03 #Python
wxPython定时器wx.Timer简单应用实例
Jun 03 #Python
Python基于DES算法加密解密实例
Jun 03 #Python
Python使用minidom读写xml的方法
Jun 03 #Python
Python实现程序的单一实例用法分析
Jun 03 #Python
python简单获取本机计算机名和IP地址的方法
Jun 03 #Python
Python自动调用IE打开某个网站的方法
Jun 03 #Python
You might like
php广告加载类用法实例
2014/09/23 PHP
PHP创建/删除/复制文件夹、文件
2016/05/03 PHP
JSON 学习之完全手册 图文
2007/05/29 Javascript
javascript 解析url的search方法
2010/02/09 Javascript
JavaScript和CSS通过expression实现Table居中显示
2013/06/28 Javascript
JavaScript全排列的六种算法 具体实现
2013/06/29 Javascript
jQuery中对未来的元素绑定事件用bind、live or on
2014/04/17 Javascript
简单讲解jQuery中的子元素过滤选择器
2016/04/18 Javascript
BootStrap 动态添加验证项和取消验证项的实现方法
2016/09/28 Javascript
JS限定手机版中图片大小随分辨率自动调整的方法
2016/12/05 Javascript
js将字符串中的每一个单词的首字母变为大写其余均为小写
2017/01/05 Javascript
vue-cli常用设置总结
2018/02/24 Javascript
Koa2微信公众号开发之本地开发调试环境搭建
2018/05/16 Javascript
ajax与jsonp的区别及用法
2018/10/16 Javascript
vue.js购物车添加商品组件的方法
2019/09/17 Javascript
浅析vue中的nextTick
2020/12/28 Vue.js
[01:08:32]DOTA2-DPC中国联赛 正赛 DLG vs PHOENIX BO3 第二场 1月18日
2021/03/11 DOTA
python抓取京东价格分析京东商品价格走势
2014/01/09 Python
Python模块文件结构代码详解
2018/02/03 Python
使用Python操作FTP实现上传和下载的方法
2019/04/01 Python
python使用装饰器作日志处理的方法
2019/07/11 Python
如何打包Python Web项目实现免安装一键启动的方法
2020/05/21 Python
python 判断一组数据是否符合正态分布
2020/09/23 Python
利用纯CSS3实现文字向右循环闪过效果实例(可用于移动端)
2017/06/15 HTML / CSS
Hotels.com英国:全球领先的酒店住宿提供商
2019/01/24 全球购物
大学生自我鉴定
2013/12/08 职场文书
大学自荐信
2013/12/12 职场文书
经典婚礼主持词
2014/03/13 职场文书
房屋租赁协议书
2014/04/10 职场文书
火灾现场处置方案
2014/05/28 职场文书
2014收银员工作总结范文
2014/12/16 职场文书
论文答谢词
2015/01/20 职场文书
2015年房地产销售工作总结
2015/04/20 职场文书
公司档案管理制度
2015/08/05 职场文书
MySQL 8.0 之不可见列的基本操作
2021/05/20 MySQL
浅谈pytorch中的dropout的概率p
2021/05/27 Python