Python多线程学习资料


Posted in Python onDecember 19, 2012

一、Python中的线程使用:
Python中使用线程有两种方式:函数或者用类来包装线程对象。
1、 函数式:调用thread模块中的start_new_thread()函数来产生新线程。如下例:

import time 
import thread 
def timer(no, interval): 
cnt = 0 
while cnt<10: 
print 'Thread:(%d) Time:%s\n'%(no, time.ctime()) 
time.sleep(interval) 
cnt+=1 
thread.exit_thread() def test(): #Use thread.start_new_thread() to create 2 new threads 
thread.start_new_thread(timer, (1,1)) 
thread.start_new_thread(timer, (2,2)) 
if __name__=='__main__': 
test()

上面的例子定义了一个线程函数timer,它打印出10条时间记录后退出,每次打印的间隔由interval参数决定。thread.start_new_thread(function, args[, kwargs])的第一个参数是线程函数(本例中的timer方法),第二个参数是传递给线程函数的参数,它必须是tuple类型,kwargs是可选参数。
线程的结束可以等待线程自然结束,也可以在线程函数中调用thread.exit()或thread.exit_thread()方法。
2、 创建threading.Thread的子类来包装一个线程对象,如下例:
import threading 
import time 
class timer(threading.Thread): #The timer class is derived from the class threading.Thread 
def __init__(self, num, interval): 
threading.Thread.__init__(self) 
self.thread_num = num 
self.interval = interval 
self.thread_stop = False 
def run(self): #Overwrite run() method, put what you want the thread do here 
while not self.thread_stop: 
print 'Thread Object(%d), Time:%s\n' %(self.thread_num, time.ctime()) 
time.sleep(self.interval) 
def stop(self): 
self.thread_stop = True def test(): 
thread1 = timer(1, 1) 
thread2 = timer(2, 2) 
thread1.start() 
thread2.start() 
time.sleep(10) 
thread1.stop() 
thread2.stop() 
return 
if __name__ == '__main__': 
test()

就我个人而言,比较喜欢第二种方式,即创建自己的线程类,必要时重写threading.Thread类的方法,线程的控制可以由自己定制。
threading.Thread类的使用:
1,在自己的线程类的__init__里调用threading.Thread.__init__(self, name = threadname)
Threadname为线程的名字
2, run(),通常需要重写,编写代码实现做需要的功能。
3,getName(),获得线程对象名称
4,setName(),设置线程对象名称
5,start(),启动线程
6,jion([timeout]),等待另一线程结束后再运行。
7,setDaemon(bool),设置子线程是否随主线程一起结束,必须在start()之前调用。默认为False。
8,isDaemon(),判断线程是否随主线程一起结束。
9,isAlive(),检查线程是否在运行中。
此外threading模块本身也提供了很多方法和其他的类,可以帮助我们更好的使用和管理线程。可以参看http://www.python.org/doc/2.5.2/lib/module-threading.html。

假设两个线程对象t1和t2都要对num=0进行增1运算,t1和t2都各对num修改10次,num的最终的结果应该为20。但是由于是多线程访问,有可能出现下面情况:在num=0时,t1取得num=0。系统此时把t1调度为”sleeping”状态,把t2转换为”running”状态,t2页获得num=0。然后t2对得到的值进行加1并赋给num,使得num=1。然后系统又把t2调度为”sleeping”,把t1转为”running”。线程t1又把它之前得到的0加1后赋值给num。这样,明明t1和t2都完成了1次加1工作,但结果仍然是num=1。

上面的case描述了多线程情况下最常见的问题之一:数据共享。当多个线程都要去修改某一个共享数据的时候,我们需要对数据访问进行同步。

1、 简单的同步

最简单的同步机制就是“锁”。锁对象由threading.RLock类创建。线程可以使用锁的acquire()方法获得锁,这样锁就进入“locked”状态。每次只有一个线程可以获得锁。如果当另一个线程试图获得这个锁的时候,就会被系统变为“blocked”状态,直到那个拥有锁的线程调用锁的release()方法来释放锁,这样锁就会进入“unlocked”状态。“blocked”状态的线程就会收到一个通知,并有权利获得锁。如果多个线程处于“blocked”状态,所有线程都会先解除“blocked”状态,然后系统选择一个线程来获得锁,其他的线程继续沉默(“blocked”)。
Python中的thread模块和Lock对象是Python提供的低级线程控制工具,使用起来非常简单。如下例所示:

import thread 
import time 
mylock = thread.allocate_lock() #Allocate a lock 
num=0 #Shared resource 
def add_num(name): 
global num 
while True: 
mylock.acquire() #Get the lock 
# Do something to the shared resource 
print 'Thread %s locked! num=%s'%(name,str(num)) 
if num >= 5: 
print 'Thread %s released! num=%s'%(name,str(num)) 
mylock.release() 
thread.exit_thread() 
num+=1 
print 'Thread %s released! num=%s'%(name,str(num)) 
mylock.release() #Release the lock. 
def test(): 
thread.start_new_thread(add_num, ('A',)) 
thread.start_new_thread(add_num, ('B',)) 
if __name__== '__main__': 
test()

Python 在thread的基础上还提供了一个高级的线程控制库,就是之前提到过的threading。Python的threading module是在建立在thread module基础之上的一个module,在threading module中,暴露了许多thread module中的属性。在thread module中,python提供了用户级的线程同步工具“Lock”对象。而在threading module中,python又提供了Lock对象的变种: RLock对象。RLock对象内部维护着一个Lock对象,它是一种可重入的对象。对于Lock对象而言,如果一个线程连续两次进行acquire操作,那么由于第一次acquire之后没有release,第二次acquire将挂起线程。这会导致Lock对象永远不会release,使得线程死锁。RLock对象允许一个线程多次对其进行acquire操作,因为在其内部通过一个counter变量维护着线程acquire的次数。而且每一次的acquire操作必须有一个release操作与之对应,在所有的release操作完成之后,别的线程才能申请该RLock对象。

下面来看看如何使用threading的RLock对象实现同步。

import threading 
mylock = threading.RLock() 
num=0 
class myThread(threading.Thread): 
def __init__(self, name): 
threading.Thread.__init__(self) 
self.t_name = name 
def run(self): 
global num 
while True: 
mylock.acquire() 
print '\nThread(%s) locked, Number: %d'%(self.t_name, num) 
if num>=4: 
mylock.release() 
print '\nThread(%s) released, Number: %d'%(self.t_name, num) 
break 
num+=1 
print '\nThread(%s) released, Number: %d'%(self.t_name, num) 
mylock.release() 
def test(): 
thread1 = myThread('A') 
thread2 = myThread('B') 
thread1.start() 
thread2.start() 
if __name__== '__main__': 
test()

我们把修改共享数据的代码成为“临界区”。必须将所有“临界区”都封闭在同一个锁对象的acquire和release之间。

2、 条件同步

锁只能提供最基本的同步。假如只在发生某些事件时才访问一个“临界区”,这时需要使用条件变量Condition。
Condition对象是对Lock对象的包装,在创建Condition对象时,其构造函数需要一个Lock对象作为参数,如果没有这个Lock对象参数,Condition将在内部自行创建一个Rlock对象。在Condition对象上,当然也可以调用acquire和release操作,因为内部的Lock对象本身就支持这些操作。但是Condition的价值在于其提供的wait和notify的语义。
条件变量是如何工作的呢?首先一个线程成功获得一个条件变量后,调用此条件变量的wait()方法会导致这个线程释放这个锁,并进入“blocked”状态,直到另一个线程调用同一个条件变量的notify()方法来唤醒那个进入“blocked”状态的线程。如果调用这个条件变量的notifyAll()方法的话就会唤醒所有的在等待的线程。
如果程序或者线程永远处于“blocked”状态的话,就会发生死锁。所以如果使用了锁、条件变量等同步机制的话,一定要注意仔细检查,防止死锁情况的发生。对于可能产生异常的临界区要使用异常处理机制中的finally子句来保证释放锁。等待一个条件变量的线程必须用notify()方法显式的唤醒,否则就永远沉默。保证每一个wait()方法调用都有一个相对应的notify()调用,当然也可以调用notifyAll()方法以防万一。

生产者与消费者问题是典型的同步问题。这里简单介绍两种不同的实现方法。

1, 条件变量

import threading 
import time 
class Producer(threading.Thread): 
def __init__(self, t_name): 
threading.Thread.__init__(self, name=t_name) def run(self): 
global x 
con.acquire() 
if x > 0: 
con.wait() 
else: 
for i in range(5): 
x=x+1 
print "producing..." + str(x) 
con.notify() 
print x 
con.release() 
class Consumer(threading.Thread): 
def __init__(self, t_name): 
threading.Thread.__init__(self, name=t_name) 
def run(self): 
global x 
con.acquire() 
if x == 0: 
print 'consumer wait1' 
con.wait() 
else: 
for i in range(5): 
x=x-1 
print "consuming..." + str(x) 
con.notify() 
print x 
con.release() 
con = threading.Condition() 
x=0 
print 'start consumer' 
c=Consumer('consumer') 
print 'start producer' 
p=Producer('producer') 
p.start() 
c.start() 
p.join() 
c.join() 
print x

上面的例子中,在初始状态下,Consumer处于wait状态,Producer连续生产(对x执行增1操作)5次后,notify正在等待的Consumer。Consumer被唤醒开始消费(对x执行减1操作)

2, 同步队列

Python中的Queue对象也提供了对线程同步的支持。使用Queue对象可以实现多个生产者和多个消费者形成的FIFO的队列。
生产者将数据依次存入队列,消费者依次从队列中取出数据。

# producer_consumer_queue 
from Queue import Queue 
import random 
import threading 
import time 
#Producer thread 
class Producer(threading.Thread): 
def __init__(self, t_name, queue): 
threading.Thread.__init__(self, name=t_name) 
self.data=queue 
def run(self): 
for i in range(5): 
print "%s: %s is producing %d to the queue!\n" %(time.ctime(), self.getName(), i) 
self.data.put(i) 
time.sleep(random.randrange(10)/5) 
print "%s: %s finished!" %(time.ctime(), self.getName()) 
#Consumer thread 
class Consumer(threading.Thread): 
def __init__(self, t_name, queue): 
threading.Thread.__init__(self, name=t_name) 
self.data=queue 
def run(self): 
for i in range(5): 
val = self.data.get() 
print "%s: %s is consuming. %d in the queue is consumed!\n" %(time.ctime(), self.getName(), val) 
time.sleep(random.randrange(10)) 
print "%s: %s finished!" %(time.ctime(), self.getName()) 
#Main thread 
def main(): 
queue = Queue() 
producer = Producer('Pro.', queue) 
consumer = Consumer('Con.', queue) 
producer.start() 
consumer.start() 
producer.join() 
consumer.join() 
print 'All threads terminate!' 
if __name__ == '__main__': 
main()

在上面的例子中,Producer在随机的时间内生产一个“产品”,放入队列中。Consumer发现队列中有了“产品”,就去消费它。本例中,由于Producer生产的速度快于Consumer消费的速度,所以往往Producer生产好几个“产品”后,Consumer才消费一个产品。

Queue模块实现了一个支持多producer和多consumer的FIFO队列。当共享信息需要安全的在多线程之间交换时,Queue非常有用。Queue的默认长度是无限的,但是可以设置其构造函数的maxsize参数来设定其长度。Queue的put方法在队尾插入,该方法的原型是:

put( item[, block[, timeout]])

如果可选参数block为true并且timeout为None(缺省值),线程被block,直到队列空出一个数据单元。如果timeout大于0,在timeout的时间内,仍然没有可用的数据单元,Full exception被抛出。反之,如果block参数为false(忽略timeout参数),item被立即加入到空闲数据单元中,如果没有空闲数据单元,Full exception被抛出。

Queue的get方法是从队首取数据,其参数和put方法一样。如果block参数为true且timeout为None(缺省值),线程被block,直到队列中有数据。如果timeout大于0,在timeout时间内,仍然没有可取数据,Empty exception被抛出。反之,如果block参数为false(忽略timeout参数),队列中的数据被立即取出。如果此时没有可取数据,Empty exception也会被抛出。

Python 相关文章推荐
python自动化工具日志查询分析脚本代码实现
Nov 26 Python
python实现爬虫下载漫画示例
Feb 16 Python
跟老齐学Python之编写类之二方法
Oct 11 Python
使用Python生成随机密码的示例分享
Feb 18 Python
python3.4用函数操作mysql5.7数据库
Jun 23 Python
python判断计算机是否有网络连接的实例
Dec 15 Python
python3 property装饰器实现原理与用法示例
May 15 Python
用python写爬虫简单吗
Jul 28 Python
Python私有属性私有方法应用实例解析
Sep 15 Python
python 常见的反爬虫策略
Sep 27 Python
Python利用机器学习算法实现垃圾邮件的识别
Jun 28 Python
Selenium浏览器自动化如何上传文件
Apr 06 Python
python搭建简易服务器分析与实现
Dec 15 #Python
Python笔记(叁)继续学习
Oct 24 #Python
python笔记(2)
Oct 24 #Python
python笔记(1) 关于我们应不应该继续学习python
Oct 24 #Python
Python的一些用法分享
Oct 07 #Python
Python天气预报采集器实现代码(网页爬虫)
Oct 07 #Python
python代码检查工具pylint 让你的python更规范
Sep 05 #Python
You might like
Protoss建筑一览
2020/03/14 星际争霸
CentOS 6.2使用yum安装LAMP以及phpMyadmin详解
2013/06/17 PHP
一个经典实用的PHP图像处理类分享
2014/11/18 PHP
PHP中两个float(浮点数)比较实例分析
2015/09/27 PHP
php中的抽象方法和抽象类
2017/02/14 PHP
jQuery.Autocomplete实现自动完成功能(详解)
2010/07/13 Javascript
完美兼容多浏览器的js判断图片路径代码汇总
2015/04/17 Javascript
js如何改变文章的字体大小
2016/01/08 Javascript
Javascript之Number对象介绍
2016/06/07 Javascript
使用 bootstrap modal遇到的问题小结
2016/11/09 Javascript
详解Angular.js指令中scope类型的几种特殊情况
2017/02/21 Javascript
Angular实现搜索框及价格上下限功能
2018/01/19 Javascript
Vue 拦截器对token过期处理方法
2018/01/23 Javascript
js数据类型检测总结
2018/08/05 Javascript
微信小程序带动画弹窗组件使用方法详解
2018/11/27 Javascript
解决微信授权成功后点击按返回键出现空白页和报错的问题
2020/06/08 Javascript
Vue实现点击箭头上下移动效果
2020/06/11 Javascript
vue项目打包为APP,静态资源正常显示,但API请求不到数据的操作
2020/09/12 Javascript
Nodejs实现微信分账的示例代码
2021/01/19 NodeJs
python进阶教程之循环相关函数range、enumerate、zip
2014/08/30 Python
python编程实现12306的一个小爬虫实例
2017/12/27 Python
Python实现PS图像抽象画风效果的方法
2018/01/23 Python
使用django-crontab实现定时任务的示例
2018/02/26 Python
django组合搜索实现过程详解(附代码)
2019/08/06 Python
Python 实现一个手机号码获取妹子名字的功能
2019/09/25 Python
python如何提取英语pdf内容并翻译
2020/03/03 Python
在pytorch中动态调整优化器的学习率方式
2020/06/24 Python
python热力图实现简单方法
2021/01/29 Python
Daisy London官网:英国最大的首饰集团IBB旗下
2019/02/28 全球购物
戴森比利时官方网站:Dyson BE
2020/10/03 全球购物
一些网络技术方面的面试题
2014/05/01 面试题
往来会计岗位职责
2013/12/19 职场文书
客服部工作职责范本
2014/02/14 职场文书
甜品店创业计划书
2014/09/21 职场文书
工厂仓管员岗位职责
2015/04/01 职场文书
教学工作总结范文5篇
2019/08/19 职场文书